cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A264401 Triangle read by rows: T(n,k) is the number of partitions of n having least gap k.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 3, 2, 4, 4, 2, 1, 4, 6, 4, 1, 7, 8, 5, 2, 8, 11, 8, 3, 12, 15, 10, 4, 1, 14, 20, 15, 6, 1, 21, 26, 19, 9, 2, 24, 35, 27, 12, 3, 34, 45, 34, 17, 5, 41, 58, 47, 23, 6, 1, 55, 75, 59, 31, 10, 1, 66, 96, 79, 41, 13, 2
Offset: 0

Views

Author

Emeric Deutsch, Nov 21 2015

Keywords

Comments

The "least gap" or "mex" of a partition is the least positive integer that is not a part of the partition. For example, the least gap of the partition [7,4,2,2,1] is 3.
Sum of entries in row n is A000041(n).
T(n,1) = A002865(n).
Sum_{k>=1} k*T(n,k) = A022567(n).

Examples

			Row n=5 is 2,3,2; indeed, the least gaps of [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], and [1,1,1,1,1] are 1, 2, 1, 2, 3, 3, and 2, respectively (i.e., two 1s, three 2s, and two 3s).
Triangle begins:
   1
   0   1
   1   1
   1   1   1
   2   2   1
   2   3   2
   4   4   2   1
   4   6   4   1
   7   8   5   2
   8  11   8   3
  12  15  10   4   1
  14  20  15   6   1
  21  26  19   9   2
		

Crossrefs

Row sums are A000041.
Row lengths are A002024.
Column k = 1 is A002865.
Column k = 2 is A027336.
The strict case is A343348.
A000009 counts strict partitions.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A257993 gives the least gap of the partition with Heinz number n.
A339564 counts factorizations with a selected factor.
A342050 ranks partitions with even least gap.
A342051 ranks partitions with odd least gap.

Programs

  • Maple
    g := (sum(t^j*x^((1/2)*j*(j-1))*(1-x^j), j = 1 .. 80))/(product(1-x^i, i = 1 .. 80)): gser := simplify(series(g, x = 0, 23)): for n from 0 to 30 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 25 do seq(coeff(P[n], t, j), j = 1 .. degree(P[n])) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, `if`(i=0, [1, 0],
          [0, x]), `if`(i<1, 0, (p-> [0, p[2] +p[1]*x^i])(
          b(n, i-1)) +add(b(n-i*j, i-1), j=1..n/i)))
        end:
    T:= n->(p->seq(coeff(p, x, i), i=1..degree(p)))(b(n, n+1)[2]):
    seq(T(n), n=0..20);  # Alois P. Heinz, Nov 29 2015
  • Mathematica
    Needs["Combinatorica`"]; {1, 0}~Join~Flatten[Table[Count[Map[If[# == {}, 0, First@ #] &@ Complement[Range@ n, #] &, Combinatorica`Partitions@ n], n_ /; n == k], {n, 17}, {k, n}] /. 0 -> Nothing] (* Michael De Vlieger, Nov 21 2015 *)
    mingap[q_]:=Min@@Complement[Range[If[q=={},0,Max[q]]+1],q];Table[Length[Select[IntegerPartitions[n],mingap[#]==k&]],{n,0,15},{k,Round[Sqrt[2*(n+1)]]}] (* Gus Wiseman, Apr 19 2021 *)
    b[n_, i_] := b[n, i] = If[n == 0, If[i == 0, {1, 0}, {0, x}], If[i<1, {0, 0}, {0, #[[2]] + #[[1]]*x^i}&[b[n, i-1]] + Sum[b[n-i*j, i - 1], {j, 1, n/i}]]];
    T[n_] := CoefficientList[b[n, n + 1], x][[2]] // Rest;
    T /@ Range[0, 20] // Flatten (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)

Formula

G.f.: G(t,x) = Sum_{j>=1} (t^j*x^{j(j-1)/2}*(1-x^j))/Product_{i>=1}(1-x^i).

A343338 Numbers with no prime index dividing or divisible by all the other prime indices.

Original entry on oeis.org

1, 15, 33, 35, 45, 51, 55, 69, 75, 77, 85, 91, 93, 95, 99, 105, 119, 123, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 201, 203, 205, 207, 209, 215, 217, 219, 221, 225, 231, 245, 247, 249, 253, 255, 265, 275, 279, 285, 287, 291, 295, 297, 299, 301
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2021

Keywords

Comments

Alternative name: 1 and numbers whose smallest prime index does not divide all the other prime indices, nor whose greatest prime index is divisible by all the other prime indices.
First differs from A302697 in having 91.
First differs from A337987 in having 91.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of partitions with greatest part not divisible by all the others and smallest part not dividing all the others (counted by A343342). The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}         105: {2,3,4}      203: {4,10}
     15: {2,3}      119: {4,7}        205: {3,13}
     33: {2,5}      123: {2,13}       207: {2,2,9}
     35: {3,4}      135: {2,2,2,3}    209: {5,8}
     45: {2,2,3}    141: {2,15}       215: {3,14}
     51: {2,7}      143: {5,6}        217: {4,11}
     55: {3,5}      145: {3,10}       219: {2,21}
     69: {2,9}      153: {2,2,7}      221: {6,7}
     75: {2,3,3}    155: {3,11}       225: {2,2,3,3}
     77: {4,5}      161: {4,9}        231: {2,4,5}
     85: {3,7}      165: {2,3,5}      245: {3,4,4}
     91: {4,6}      175: {3,3,4}      247: {6,8}
     93: {2,11}     177: {2,17}       249: {2,23}
     95: {3,8}      187: {5,7}        253: {5,9}
     99: {2,2,5}    201: {2,19}       255: {2,3,7}
For example, the prime indices of 975 are {2,3,3,6}, all of which divide 6, but not all of which are multiples of 2, so 975 is not in the sequence.
		

Crossrefs

The first condition alone gives A342193.
The second condition alone gives A343337.
The half-opposite versions are A343339 and A343340.
The partitions with these Heinz numbers are counted by A343342.
The opposite version is the complement of A343343.
A000005 counts divisors.
A000070 counts partitions with a selected part.
A001055 counts factorizations.
A056239 adds up prime indices, row sums of A112798.
A067824 counts strict chains of divisors starting with n.
A253249 counts strict chains of divisors.
A339564 counts factorizations with a selected factor.

Programs

  • Mathematica
    Select[Range[100],#==1||With[{p=PrimePi/@First/@FactorInteger[#]},!And@@IntegerQ/@(Max@@p/p)&&!And@@IntegerQ/@(p/Min@@p)]&]

Formula

Intersection of A342193 and A343337.
Showing 1-2 of 2 results.