A343369 Triangle read by rows: T(n,k) is the number of polygons formed by connecting the vertices of a regular 2n-gon such that the winding number around the center is k and with no side passing through the center.
0, 0, 1, 6, 10, 0, 296, 391, 56, 1, 21580, 28298, 6132, 246, 0, 2317884, 3137098, 859536, 70389, 1012, 1, 349281380, 490054052, 158307216, 19756138, 711692, 4082, 0, 70651004192, 102443715659, 37521267472, 6221752657, 390266848, 6782563, 16368, 1
Offset: 1
Examples
Triangle begins: 0; 0, 1; 6, 10, 0; 296, 391, 56, 1; 21580, 28298, 6132, 246, 0;
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..55 (rows 1..10)
- Ludovic Schwob, Illustration of T(4,k), k=0..3
- Wikipedia, Winding number
Programs
-
PARI
T(n)={ local(Cache=Map()); my(dir(p,q)=if(p
=n&&q p-n, 1/'x, 1))); my(recurse(k,p,b) = my(hk=[k,p,b], z); if(!mapisdefined(Cache, hk, &z), z = if(k==0, p<>n, sum(q=1, 2*n-1, if(!bittest(b,q) && (q-p)%n, dir(p,q)*self()(k-1, q, b+(1<
Andrew Howroyd, May 14 2021
Formula
T(2*n,2*n-1) = 1 and T(2*n+1,2*n) = 0 for all n>=1.
T(n,n-2) = 4^(n-1)-2*n for all n>=2.
Extensions
a(22)-a(36) from Andrew Howroyd, May 14 2021
Comments