A343381 Number of strict integer partitions of n with a part dividing all the others but no part divisible by all the others.
1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 3, 3, 6, 4, 9, 9, 14, 14, 20, 20, 30, 30, 39, 44, 59, 59, 77, 85, 106, 114, 145, 150, 191, 205, 247, 267, 328, 345, 418, 455, 544, 582, 699, 745, 886, 962, 1117, 1209, 1430, 1523, 1778, 1932, 2225, 2406, 2792, 3001, 3456, 3750
Offset: 0
Keywords
Examples
The a(6) = 1 through a(16) = 14 partitions (empty column indicated by dot, A..D = 10..13): 321 . 431 531 541 641 642 751 761 861 862 521 721 731 651 5431 851 951 871 4321 5321 741 6421 941 A41 961 831 7321 A31 B31 A42 921 B21 6531 B41 5421 6431 7431 D21 6521 7521 6541 7421 9321 7531 8321 54321 7621 8431 8521 9421 A321 64321
Crossrefs
The first condition alone gives A097986.
The second condition alone gives A343377.
The opposite (and dual) version is A343380.
A000005 counts divisors.
A000009 counts strict partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&And@@IntegerQ/@(#/Min@@#)&&!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]
Comments