A343397 Number of ways to write n as 2^x + [y^2/3] + [z^2/4] with x,y,z positive integers, where [.] is the floor function.
0, 1, 2, 3, 4, 4, 5, 5, 8, 5, 9, 5, 8, 8, 6, 9, 9, 10, 8, 11, 10, 10, 9, 9, 14, 8, 8, 10, 12, 11, 6, 14, 13, 10, 12, 13, 15, 11, 13, 9, 20, 6, 12, 17, 13, 13, 10, 11, 17, 12, 11, 13, 15, 14, 9, 13, 13, 14, 11, 18, 11, 15, 7, 12, 22, 13, 14, 17, 17, 11, 15, 13, 24, 16, 9, 17, 15, 15, 14, 18
Offset: 1
Keywords
Examples
a(2) = 1 with 2 = 2^1 + [1^2/3] + [1^2/4]. a(3) = 2 with 3 = 2^1 + [1^2/3] + [2^2/4] = 2^1 + [2^2/3] + [1^2/4].
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Natural numbers represented by [x^2/a] + [y^2/b] + [z^2/c], arXiv:1504.01608 [math.NT], 2015.
Programs
-
Mathematica
PowQ[n_]:=PowQ[n]=n>1&&IntegerQ[Log[2,n]]; tab={};Do[r=0;Do[If[PowQ[n-Floor[x^2/3]-Floor[y^2/4]],r=r+1],{x,1,Sqrt[3n-1]},{y,1,Sqrt[4(n-Floor[x^2/3]-1)+1]}];tab=Append[tab,r],{n,1,80}];Print[tab]
Comments