A343394 Sum of indices of n's distinct prime factors below n.
0, 0, 0, 1, 0, 3, 0, 1, 2, 4, 0, 3, 0, 5, 5, 1, 0, 3, 0, 4, 6, 6, 0, 3, 3, 7, 2, 5, 0, 6, 0, 1, 7, 8, 7, 3, 0, 9, 8, 4, 0, 7, 0, 6, 5, 10, 0, 3, 4, 4, 9, 7, 0, 3, 8, 5, 10, 11, 0, 6, 0, 12, 6, 1, 9, 8, 0, 8, 11, 8, 0, 3, 0, 13, 5, 9, 9, 9, 0, 4, 2, 14, 0, 7, 10, 15, 12, 6, 0, 6
Offset: 1
Keywords
Examples
a(7) = a(prime(4)) = 0. a(21) = a(3 * 7) = a(prime(2) * prime(4)) = 2 + 4 = 6.
Programs
-
Mathematica
nmax = 90; CoefficientList[Series[Sum[k x^(2 Prime[k])/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x] // Rest a[n_] := If[PrimeQ[n], 0, Plus @@ (PrimePi[#[[1]]] & /@ FactorInteger[n])]; Table[a[n], {n, 90}]
Formula
G.f.: Sum_{k>=1} k * x^(2*prime(k)) / (1 - x^prime(k)).
a(n) = 0 if n is prime, A066328(n) otherwise.