cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A344432 a(n) = Sum_{k=1..n} mu(k) * 2^(n - k).

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 7, 13, 26, 52, 105, 209, 418, 835, 1671, 3343, 6686, 13371, 26742, 53483, 106966, 213933, 427867, 855733, 1711466, 3422932, 6845865, 13691730, 27383460, 54766919, 109533837, 219067673, 438135346, 876270693, 1752541387, 3505082775, 7010165550
Offset: 0

Views

Author

Seiichi Manyama, May 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[MoebiusMu[k] * 2^(n-k), {k,1,n}]; Array[a, 40] (* Amiram Eldar, May 19 2021 *)
  • PARI
    a(n) = sum(k=1, n, moebius(k)*2^(n-k));
    
  • PARI
    my(N=40, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, moebius(k)*x^k)/(1-2*x)))
    
  • PARI
    a(n) = if(n==0, 0, 2*a(n-1)+moebius(n));

Formula

G.f.: (Sum_{k>=1} mu(k) * x^k) / (1 - 2*x).
a(n) = 2 * a(n-1) + mu(n) for n > 0.
a(n) ~ A238270 * 2^n. - Vaclav Kotesovec, May 19 2021

A344431 a(n) = Sum_{k=1..n} mu(k) * n^(k - 1).

Original entry on oeis.org

1, -1, -11, -19, -654, 6439, -103298, -233543, -479042, 999089891, -23581102192, -56760341915, -23425343599215, 736752260240319, 31008836538146011, 76278687880642289, -48483493990740616866, -121045054967668089989, -104414952870932959886007
Offset: 1

Views

Author

Seiichi Manyama, May 19 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[MoebiusMu[k] * n^(k-1), {k,1,n}]; Array[a, 20] (* Amiram Eldar, May 19 2021 *)
  • PARI
    a(n) = sum(k=1, n, moebius(k)*n^(k-1));
Showing 1-2 of 2 results.