cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A382995 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) = Sum_{d|n} phi(n/d) * (-k)^(d-1).

Original entry on oeis.org

1, 1, 0, 1, -1, 3, 1, -2, 6, 0, 1, -3, 11, -8, 5, 1, -4, 18, -28, 20, 0, 1, -5, 27, -66, 85, -30, 7, 1, -6, 38, -128, 260, -238, 70, 0, 1, -7, 51, -220, 629, -1014, 735, -136, 9, 1, -8, 66, -348, 1300, -3108, 4102, -2216, 270, 0, 1, -9, 83, -518, 2405, -7750, 15631, -16452, 6585, -500, 11
Offset: 1

Views

Author

Seiichi Manyama, Apr 12 2025

Keywords

Examples

			Square array begins:
  1,   1,    1,     1,     1,     1,      1, ...
  0,  -1,   -2,    -3,    -4,    -5,     -6, ...
  3,   6,   11,    18,    27,    38,     51, ...
  0,  -8,  -28,   -66,  -128,  -220,   -348, ...
  5,  20,   85,   260,   629,  1300,   2405, ...
  0, -30, -238, -1014, -3108, -7750, -16770, ...
  7,  70,  735,  4102, 15631, 46662, 117655, ...
		

Crossrefs

Columns k=1..3 give A193356, A382999, A383000.
Main diagonal gives A382998.

Programs

  • PARI
    a(n, k) = sumdiv(n, d, eulerphi(n/d)*(-k)^(d-1));

Formula

A(n,k) = (1/k) * A382994(n,k).
A(n,k) = Sum_{j=1..n} (-k)^(gcd(n,j) - 1).
G.f. of column k: Sum_{j>=1} phi(j) * x^j / (1 + k*x^j).

A343490 a(n) = Sum_{k=1..n} 4^(gcd(k, n) - 1).

Original entry on oeis.org

1, 5, 18, 70, 260, 1050, 4102, 16460, 65574, 262420, 1048586, 4195500, 16777228, 67112990, 268436040, 1073758360, 4294967312, 17179936830, 68719476754, 274878169880, 1099511636076, 4398047559730, 17592186044438, 70368748407000, 281474976711700, 1125899923619900
Offset: 1

Views

Author

Seiichi Manyama, Apr 17 2021

Keywords

Crossrefs

Column 4 of A343489.

Programs

  • Maple
    N:= 30: # for a(1)..a(N)
    G:= add(numtheory:-phi(k)*x^k/(1-4*x^k),k=1..N):
    S:= series(G,x,N+1):
    seq(coeff(S,x,j),j=1..N); # Robert Israel, Sep 11 2023
  • Mathematica
    a[n_] := Sum[4^(GCD[k, n] - 1), {k, 1, n}]; Array[a, 26] (* Amiram Eldar, Apr 17 2021 *)
  • PARI
    a(n) = sum(k=1, n, 4^(gcd(k, n)-1));
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*4^(d-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k/(1-4*x^k)))

Formula

a(n) = Sum_{d|n} phi(n/d)*4^(d - 1) = A054611(n)/4.
G.f.: Sum_{k>=1} phi(k) * x^k / (1 - 4*x^k).

A343492 a(n) = Sum_{k=1..n} 5^(gcd(k, n) - 1).

Original entry on oeis.org

1, 6, 27, 132, 629, 3162, 15631, 78264, 390681, 1953774, 9765635, 48831564, 244140637, 1220718786, 6103516983, 30517656528, 152587890641, 762939850086, 3814697265643, 19073488283028, 95367431672037, 476837167968810, 2384185791015647, 11920929004069128
Offset: 1

Views

Author

Seiichi Manyama, Apr 17 2021

Keywords

Crossrefs

Column 5 of A343489.

Programs

  • Mathematica
    a[n_] := Sum[5^(GCD[k, n] - 1), {k, 1, n}]; Array[a, 24] (* Amiram Eldar, Apr 17 2021 *)
  • PARI
    a(n) = sum(k=1, n, 5^(gcd(k, n)-1));
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*5^(d-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k/(1-5*x^k)))

Formula

a(n) = Sum_{d|n} phi(n/d)*5^(d - 1) = A054612(n)/5.
G.f.: Sum_{k>=1} phi(k) * x^k / (1 - 5*x^k).
Showing 1-3 of 3 results.