A343533 a(n) is the largest value of k such that binomial(2*m-1, m-1) == 1 (mod m^k) for m = 2*n + 1.
2, 3, 3, 1, 3, 3, 0, 3, 3, 0, 3, 1, 0, 3, 3, 0, 0, 3, 0, 3, 3, 0, 3, 1, 0, 3, 0, 0, 3, 3, 0, 0, 3, 0, 3, 3, 0, 0, 3, 0, 3, 0, 0, 3, 0, 0, 0, 3, 0, 3, 3, 0, 3, 3, 0, 3, 0, 0, 0, 1, 0, 1, 3, 0, 3, 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 0, 0, 3, 0, 0, 3, 0, 3, 1, 0, 3, 0
Offset: 1
Keywords
Programs
-
Maple
a := proc(n) local x, x0, y, k, bound; bound := 1000; x := 2*n + 1; x0 := x; y := binomial(4*n + 1, 2*n); for k from 0 to bound while y mod x = 1 do x := x * x0 od; if k < bound then k else print("No k below ", bound) fi end: seq(a(n), n = 1..100); # Peter Luschny, Apr 22 2021
-
PARI
a(n) = my(x=2*n+1, b=binomial(2*x-1, x-1)); for(k=1, oo, if(Mod(b, x^k)!=1, return(k-1)))
Comments