cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343535 Number T(n,k) of permutations of [n] having exactly k consecutive triples j, j+1, j-1; triangle T(n,k), n>=0, 0<=k<=floor(n/3), read by rows.

Original entry on oeis.org

1, 1, 2, 5, 1, 20, 4, 102, 18, 626, 92, 2, 4458, 564, 18, 36144, 4032, 144, 328794, 32898, 1182, 6, 3316944, 301248, 10512, 96, 36755520, 3057840, 102240, 1200, 443828184, 34073184, 1085904, 14304, 24, 5800823880, 413484240, 12538080, 174000, 600, 81591320880
Offset: 0

Views

Author

Alois P. Heinz, Apr 18 2021

Keywords

Comments

Terms in column k are multiples of k!.

Examples

			T(4,1) = 4: 1342, 2314, 3421, 4231.
Triangle T(n,k) begins:
              1;
              1;
              2;
              5,           1;
             20,           4;
            102,          18;
            626,          92,          2;
           4458,         564,         18;
          36144,        4032,        144;
         328794,       32898,       1182,        6;
        3316944,      301248,      10512,       96;
       36755520,     3057840,     102240,     1200;
      443828184,    34073184,    1085904,    14304,     24;
     5800823880,   413484240,   12538080,   174000,    600;
    81591320880,  5428157760,  156587040,  2214720,  10800;
  1228888215960, 76651163160, 2105035440, 29777520, 175800, 120;
  ...
		

Crossrefs

Column k=0 gives A212580.
Row sums give A000142.

Programs

  • Maple
    b:= proc(s, l, t) option remember; `if`(s={}, 1, add((h->
          expand(b(s minus {j}, j, `if`(h=1, 2, 1))*
         `if`(t=2 and h=-2, x, 1)))(j-l), j=s))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(
                   b({$1..n}, -1, 1)):
    seq(T(n), n=0..13);
  • Mathematica
    b[s_, l_, t_] := b[s, l, t] = If[s == {}, 1, Sum[Function[h,
         Expand[b[s ~Complement~ {j}, j, If[h == 1, 2, 1]]*
         If[t == 2 && h == -2, x, 1]]][j - l], {j, s}]];
    T[n_] := CoefficientList[b[Range[n], -1, 1], x];
    T /@ Range[0, 13] // Flatten (* Jean-François Alcover, Apr 26 2021, after Alois P. Heinz *)

Formula

T(3n,n) = n!.