A343560 a(n) = (n-1)*(4*n+1).
0, 9, 26, 51, 84, 125, 174, 231, 296, 369, 450, 539, 636, 741, 854, 975, 1104, 1241, 1386, 1539, 1700, 1869, 2046, 2231, 2424, 2625, 2834, 3051, 3276, 3509, 3750, 3999, 4256, 4521, 4794, 5075, 5364, 5661, 5966, 6279, 6600, 6929, 7266, 7611, 7964, 8325
Offset: 1
Examples
On a square lattice, place the nonnegative integers at lattice points forming a spiral as follows: place "0" at the origin; then move one step downward (i.e., in the negative y direction) and place "1" at the lattice point reached; then turn 90 degrees in either direction and place a "2" at the next lattice point; then make another 90-degree turn in the same direction and place a "3" at the lattice point; etc. The terms of the sequence, not including "0", will lie parallel to the negative y-axis, located within the fourth quadrant, as seen in the example below: 99 64--65--66--67--68--69--70--71--72 | | | 98 63 36--37--38--39--40--41--42 73 | | | | | 97 62 35 16--17--18--19--20 43 74 | | | | | | | 96 61 34 15 4---5---6 21 44 75 | | | | | | | | | 95 60 33 14 3 *0* 7 22 45 76 | | | | | | | | | | 94 59 32 13 2---1 8 23 46 77 | | | | | | | | 93 58 31 12--11--10--*9* 24 47 78 | | | | | | 92 57 30--29--28--27-*26*-25 48 79 | | | | 91 56--55--54--53--52-*51*-50--49 80 | | 90--89--88--87--86--85-*84*-83--82--81
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
C
int a(int n) { return 4*n*n-3*n-1; }
-
Maple
A343560 := n -> 4*n^2 - 3*n - 1; seq(A343560(n), n = 1 .. 50);
-
Mathematica
A343560[n_] := (4*n + 1)*(n - 1); Array[A343560, 100] (* or *) LinearRecurrence[{3, -3, 1}, {0, 9, 26}, 100] (* Paolo Xausa, Aug 27 2025 *)
Formula
G.f.: x^2*(-9+x)/(x-1)^3 . - R. J. Mathar, Sep 15 2021
Sum_{n>=2} 1/a(n) = 24/25 -3*log(2)/5 -Pi/10. - R. J. Mathar, May 30 2022
Comments