cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A178242 Numerator of n*(5+n)/((n+1)*(n+4)).

Original entry on oeis.org

0, 3, 7, 6, 9, 25, 33, 21, 26, 63, 75, 44, 51, 117, 133, 75, 84, 187, 207, 114, 125, 273, 297, 161, 174, 375, 403, 216, 231, 493, 525, 279, 296, 627, 663, 350, 369, 777, 817, 429, 450, 943, 987, 516, 539, 1125, 1173, 611, 636, 1323, 1375, 714, 741, 1537, 1593
Offset: 0

Views

Author

Paul Curtz, Dec 20 2010

Keywords

Comments

Sequence of differences denominator(n) - numerator(n) = 1,2,2,1... = A014695(n).
Denominator: A160050(n+2).

Examples

			The reduced fractions are 0, 3/5, 7/9, 6/7, 9/10, 25/27, 33/35, 21/22, 26/27, 63/65, 75/77, 44/45, ..
		

Crossrefs

Programs

  • Magma
    [Floor(n*(n+5)*((-1)^((2*n-(-1)^n-3)/4)+3)/8) : n in [0..50]]; // Vincenzo Librandi, Oct 08 2011
    
  • Maple
    A178242 := proc(n) n*(5+n)/(n+1)/(n+4) ;  numer(%) ;end proc:
    seq(A178242(n),n=0..80) ; # R. J. Mathar, Dec 20 2010
  • Mathematica
    f[n_] := n/GCD[n, 4]; Array[f[#] f[# + 5] &, 50, 0]
    Table[Numerator[n*(5+n)/((n+1)*(n+4))], {n,0,50}] (* G. C. Greubel, Sep 21 2018 *)
  • PARI
    vector(50, n, n--; numerator(n*(5+n)/((n+1)*(n+4)))) \\ G. C. Greubel, Sep 21 2018

Formula

a(n) = numerator(A176027(n)/A001793(n+1)).
a(n) = A060819(n)*A060819(n+5).
a(n) = +3*a(n-1) -6*a(n-2) +10*a(n-3) -12*a(n-4) +12*a(n-5) -10*a(n-6) +6*a(n-7) -3*a(n-8) +a(n-9).
a(n) = 3*a(n-4) -3*a(n-8) +a(n-12).
G.f.: x*(-3+2*x-3*x^2-3*x^3+x^7) / ( (x-1)^3*(x^2+1)^3 ).
a(n) = n*(n+5)*((-1)^((2*n-(-1)^n-3)/4)+3)/8 = n*(n+5)*(3-i^(n*(n+1)))/8, where i=sqrt(-1); also a(n) = a(n-4)*A028557(n)/A028557(n-4) for n>4. - Bruno Berselli, Dec 30 2010
From Peter Bala, Aug 07 2022: (Start)
a(n) = numerator of n*(n+5)/4.
a(n) is quasi-polynomial in n: a(4*n) = n*(4*n+5) = A343560(n+1); a(4*n+1) = (2*n+3)*(4*n+1); a(4*n+2) = (2*n+1)*(4*n+7); a(4*n+3) = (n+2)*(4*n+3) = A180863(n+2). (End)
Sum_{n>=1} 1/a(n) = 112/75 - Pi/10. - Amiram Eldar, Aug 16 2022

A180863 Wiener index of the n-sun graph.

Original entry on oeis.org

6, 21, 44, 75, 114, 161, 216, 279, 350, 429, 516, 611, 714, 825, 944, 1071, 1206, 1349, 1500, 1659, 1826, 2001, 2184, 2375, 2574, 2781, 2996, 3219, 3450, 3689, 3936, 4191, 4454, 4725, 5004, 5291, 5586, 5889, 6200, 6519, 6846, 7181, 7524, 7875, 8234, 8601
Offset: 2

Views

Author

Emeric Deutsch, Sep 28 2010

Keywords

Comments

The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph.
The Wiener polynomial of the n-sun graph is (1/2)*nt[(n-3)t^2+2(n-1)t+n+3].
Comment from Zachary Dove, Apr 19 2021 (Start)
(Cf. A343560)
On a square lattice, place the nonnegative integers at lattice points forming a spiral as follows: place "0" at the origin; then move one step downward (i.e., in the negative y direction) and place "1" at the lattice point reached; then turn 90 degrees in either direction and place a "2" at the next lattice point; then make another 90-degree turn in the same direction and place a "3" at the lattice point; etc. The terms of the sequence will lie parallel to the positive x-axis, located within the first quadrant, as seen in the example below:
.
99 64--65--66--67--68--69--70--71--72
| | |
98 63 36--37--38--39--40--41--42 73
| | | | |
97 62 35 16--17--18--19--20 43 74
| | | | | | |
96 61 34 15 4---5--*6**21**44**75*
| | | | | | | | |
95 60 33 14 3 0 7 22 45 76
| | | | | | | | | |
94 59 32 13 2---1 8 23 46 77
| | | | | | | |
93 58 31 12--11--10---9 24 47 78
| | | | | |
92 57 30--29--28--27--26--25 48 79
| | | |
91 56--55--54--53--52--51--50--49 80
| |
90--89--88--87--86--85--84--83--82--81
(End)

Programs

  • Maple
    seq(n*(4*n-5), n = 2 .. 50);
  • Mathematica
    (* Start from Eric W. Weisstein, Sep 07 2017, adapted to new offset *)
    Table[n (4 n - 5), {n, 2, 20}]
    LinearRecurrence[{3, -3, 1}, {6, 21, 44}, 20]
    CoefficientList[Series[(-6 - 3 x + x^2)/(-1 + x)^3, {x, 0, 20}], x]
    (* End *)
  • PARI
    a(n)=n*(4*n-5) \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = n*(4*n-5).
G.f.: x^2*(-6-3*x+x^2)/(x-1)^3. - Colin Barker, Oct 31 2012, adapted to new offset Sep 29 2021
a(n) = 3*a(n-1) - 3*a(n-2) + a(n). - Eric W. Weisstein, Sep 07 2017
a(n) = A033954(n-1)-1 = A033951(n-1) -1. -R. J. Mathar, Sep 29 2021
Sum_{n>=2} 1/a(n) = 1/5 - Pi/10 + 3*log(2)/5. - Amiram Eldar, Apr 16 2022
E.g.f.: exp(x)*(-x + 4*x^2) + x. - Nikolaos Pantelidis, Feb 10 2023

Extensions

a(2)=6 prefixed by R. J. Mathar, Sep 29 2021

A386486 a(0) = 1; thereafter a(n) = 4*n^2 - 3*n + 2.

Original entry on oeis.org

1, 3, 12, 29, 54, 87, 128, 177, 234, 299, 372, 453, 542, 639, 744, 857, 978, 1107, 1244, 1389, 1542, 1703, 1872, 2049, 2234, 2427, 2628, 2837, 3054, 3279, 3512, 3753, 4002, 4259, 4524, 4797, 5078, 5367, 5664, 5969, 6282, 6603, 6932, 7269, 7614, 7967, 8328, 8697, 9074, 9459, 9852, 10253, 10662, 11079, 11504, 11937, 12378
Offset: 0

Views

Author

N. J. A. Sloane, Aug 27 2025

Keywords

Comments

Differs from A001107, A054552, and A343560 only by a small constant, but has its own entry because of an important geometric application (which will be added soon).

Crossrefs

Programs

  • Mathematica
    A386486[n_] := If[n == 0, 1, (4*n - 3)*n + 2]; Array[A386486, 100, 0] (* or *)
    LinearRecurrence[{3, -3, 1}, {1, 3, 12, 29}, 100] (* Paolo Xausa, Aug 27 2025 *)

Formula

From Elmo R. Oliveira, Sep 02 2025: (Start)
G.f.: (1 + 6*x^2 + x^3)/(1 - x)^3.
E.g.f.: exp(x)*(2 + x + 4*x^2) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
Showing 1-3 of 3 results.