cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A178370 The trisection A178242(3n+2).

Original entry on oeis.org

7, 25, 26, 44, 133, 187, 125, 161, 403, 493, 296, 350, 817, 943, 539, 611, 1375, 1537, 854, 944, 2077, 2275, 1241, 1349, 2923, 3157, 1700, 1826, 3913, 4183, 2231, 2375, 5047, 5353, 2834, 2996, 6325, 6667, 3509, 3689, 7747, 8125, 4256, 4454, 9313, 9727, 5075, 5291
Offset: 0

Views

Author

Paul Curtz, Dec 21 2010

Keywords

Comments

For n = 0, 1, 2, 3, 4, 5, 6, 7, ...,
a(n-1) = -1, 7, 25, 26, 44, 133, 187, 125, ...
+ A177049(n) = 1, 5, 14, 55, 91, 68, 95, 253, ...
gives 0, 12, 39, 81, 135, 201, 282, 378, ...
which are increasing multiples of 3.
a(n) mod 9 = period 4: repeat 7,7,8,8.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (7+4*x-7*x^2+46*x^3-9*x^4+8*x^5+4*x^6+2*x^7-x^8)/((1-x)^3*(1 + x^2)^3 ) )); // G. C. Greubel, Feb 26 2020
    
  • Maple
    m:=50; S:=series((7+4*x-7*x^2+46*x^3-9*x^4+8*x^5+4*x^6+2*x^7-x^8)/((1-x)^3*(1 + x^2)^3 ), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 26 2020
  • Mathematica
    LinearRecurrence[{3,-6,10,-12,12,-10,6,-3,1}, {7,25,26,44,133,187,125,161,403}, 50] (* Harvey P. Dale, May 21 2015 *)
  • PARI
    Vec( (7+4*x-7*x^2+46*x^3-9*x^4+8*x^5+4*x^6+2*x^7-x^8)/((1-x)^3*(1 + x^2)^3 ) +O('x^50) ) \\ G. C. Greubel, Feb 26 2020
    
  • Sage
    def A178370_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (7+4*x-7*x^2+46*x^3-9*x^4+8*x^5+4*x^6+2*x^7-x^8)/((1-x)^3*(1 + x^2)^3 ) ).list()
    A178370_list(50) # G. C. Greubel, Feb 26 2020

Formula

a(n) = A060819(2+3*n)*(A060819(7+3*n) + A176672(n+2))/2. - corrected by G. C. Greubel, Feb 26 2020
G.f.: (7 +4*x -7*x^2 +46*x^3 -9*x^4 +8*x^5 +4*x^6 +2*x^7 -x^8)/((1-x)^3 * (1 + x^2)^3 ). - R. J. Mathar, Jan 16 2011
From G. C. Greubel, Feb 26 2020: (Start)
a(n) = (6 + i^n*(1 - i + (-1)^n*(1 + i)))*(9*n^2 + 27*n + 14)/16.
E.g.f.: ( 3*(14+36*x+9*x^2)*exp(x) + (14+36*x-9*x^2)*cos(x) + (14-36*x-9*x^2)*sin(x) )/8. (End)
Sum_{n>=0} 1/a(n) = 1 - (3 + 4*sqrt(3))*Pi/45. - Amiram Eldar, Aug 12 2022

Extensions

More terms from Jinyuan Wang, Feb 26 2020

A181318 a(n) = A060819(n)^2.

Original entry on oeis.org

0, 1, 1, 9, 1, 25, 9, 49, 4, 81, 25, 121, 9, 169, 49, 225, 16, 289, 81, 361, 25, 441, 121, 529, 36, 625, 169, 729, 49, 841, 225, 961, 64, 1089, 289, 1225, 81, 1369, 361, 1521, 100, 1681, 441, 1849, 121, 2025, 529, 2209, 144, 2401, 625, 2601, 169, 2809, 729
Offset: 0

Views

Author

Paul Curtz, Jan 26 2011

Keywords

Comments

The first sequence, p=0, of the family A060819(n)*A060819(n+p).
Hence array
p=0: 0, 1, 1, 9, 1, 25, 9, 49, a(n)=A060819(n)^2,
p=1: 0, 1, 3, 3, 5, 15, 21, 14, A064038(n),
p=2: 0, 3, 1, 15, 3, 35, 6, 63, A198148(n),
p=3: 0, 1, 5, 9, 7, 10, 27, 35, A160050(n),
p=4: 0, 5, 3, 21, 2, 45, 15, 77, A061037(n),
p=5: 0, 3, 7, 6, 9, 25, 33, 21, A178242(n),
p=6: 0, 7, 2, 27, 5, 55, 9, 91, A217366(n),
p=7: 0, 2, 9, 15, 11, 15, 39, 49, A217367(n),
p=8: 0, 9, 5, 33, 3, 65, 21, 105, A180082(n).
Compare columns 2, 3 and 5, columns 4 and 7 and columns 6 and 8.
From Peter Bala, Feb 19 2019: (Start)
We make some general remarks about the sequence a(n) = numerator(n^2/(n^2 + k^2)) = (n/gcd(n,k))^2 for k a fixed positive integer (we suppress the dependence of a(n) on k). The present sequence corresponds to the case k = 4.
a(n) is a quasi-polynomial in n. In fact, a(n) = n^2/b(n) where b(n) = gcd(n^2,k^2) is a purely periodic sequence in n.
In addition to being multiplicative these sequences are also strong divisibility sequences, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. In particular, it follows that a(n) is a divisibility sequence: if n divides m then a(n) divides a(m).
By the multiplicativeness and strong divisibility property of the sequence a(n) it follows that if gcd(n,m) = 1 then a( a(n)*a(m) ) = a(a(n)) * a(a(m)), a( a(a(n))*a(a(m)) ) = a(a(a(n))) * a(a(a(m))) and so on.
The sequence a(n) has the rational generating function Sum_{d divides k} f(d)*F(x^d), where F(x) = x*(1 + x)/(1 - x)^3 = x + 4*x^2 + 9*x^3 + 16*x^4 + ... is the o.g.f. for the squares A000290, and where f(n) is the Dirichlet inverse of the Jordan totient function J_2(n) - see A007434. The function f(n) is multiplicative and is defined on prime powers p^k by f(p^k) = (1 - p^2). See A046970. Cf. A060819. (End)
a(n-4) is the constant needed to complete the n-polygonal numbers into squares (see A377851); a(-1) = 1, which completes the triangle numbers, is not shown in the data. - Jonathan Dushoff, Nov 12 2024

Crossrefs

Programs

  • Magma
    [n^2/GCD(n,4)^2: n in [0..100]]; // G. C. Greubel, Sep 19 2018
    
  • Maple
    a:=n->n^2/gcd(n,4)^2: seq(a(n),n=0..60); # Muniru A Asiru, Feb 20 2019
  • Mathematica
    Table[n^2/GCD[n,4]^2, {n,0,100}] (* G. C. Greubel, Sep 19 2018 *)
    LinearRecurrence[{0,0,0,3,0,0,0,-3,0,0,0,1},{0,1,1,9,1,25,9,49,4,81,25,121},60] (* Harvey P. Dale, Jan 18 2025 *)
  • PARI
    a(n)=n^2/gcd(n,4)^2 \\ Charles R Greathouse IV, Dec 21 2011
    
  • Sage
    [n^2/gcd(n, 4)^2 for n in (0..100)] # G. C. Greubel, Feb 20 2019

Formula

a(2*n) = A168077(n), a(2*n+1) = A016754(n).
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
G.f.: x*(1 + x + 9*x^2 + x^3 + 22*x^4 + 6*x^5 + 22*x^6 + x^7 + 9*x^8 + x^9 + x^10)/(1-x^4)^3. - R. J. Mathar, Mar 10 2011
From Peter Bala, Feb 19 2019: (Start)
a(n) = numerator(n^2/(n^2 + 16)) = n^2/(gcd(n^2,16)) = (n/gcd(n,4))^2.
a(n) = n^2/b(n), where b(n) = [1, 4, 1, 16, 1, 4, 1, 16, ...] is a purely periodic sequence of period 4.
a(n) is a quasi-polynomial in n: a(4*n) = n^2; a(4*n + 1) = (4*n + 1)^2; a(4*n + 2) = (2*n + 1)^2; a(4*n + 3) = (4*n + 3)^2.
O.g.f.: Sum_{d divides 4} A046970(d)*x^d*(1 + x^d)/(1 - x^d)^3 = x*(1 + x)/(1 - x)^3 - 3*x^2*(1 + x^2)/(1 - x^2)^3 - 3*x^4*(1 + x^4)/(1 - x^4)^3. (End)
Sum_{n>=1} 1/a(n) = 5*Pi^2/12. - Amiram Eldar, Aug 12 2022
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(2^e) = 4^max(0, e-2), and a(p^e) = p^(2*e) for p > 2.
Dirichlet g.f.: zeta(s-2)*(1 - 3/2^s - 3/4^s).
Sum_{k=1..n} a(k) ~ (37/192) * n^3. (End)
a(n) = (37 - 27*(-1)^n - 3*(-1)^(n*(n-1)/2) - 3*(-1)^(n*(n+1)/2)) * n^2/64. - Vaclav Kotesovec, Nov 14 2024

Extensions

Edited by Jean-François Alcover, Oct 01 2012 and Jan 15 2013
More terms from Michel Marcus, Jun 09 2014

A198148 a(n) = n*(n+2)*(9 - 7*(-1)^n)/16.

Original entry on oeis.org

0, 3, 1, 15, 3, 35, 6, 63, 10, 99, 15, 143, 21, 195, 28, 255, 36, 323, 45, 399, 55, 483, 66, 575, 78, 675, 91, 783, 105, 899, 120, 1023, 136, 1155, 153, 1295, 171, 1443, 190, 1599, 210, 1763, 231, 1935, 253, 2115, 276, 2303, 300, 2499, 325
Offset: 0

Views

Author

Paul Curtz, Oct 21 2011

Keywords

Comments

See, in A181318(n), A060819(n)*A060819(n+p): A060819(n)^2, A064038(n), a(n), A160050(n), A061037(n), A178242(n). The second differences a(n+2)-2*a(n+1)+a(n) = -5, 16, -26, 44, -61, 86, -110, 142, -173, 212, -250, 296, -341, 394, -446, 506, taken modulo 9 are periodic with the palindromic period 4, 7, 1, 8, 2, 5, 7, 7, 7, 5, 2, 8, 1, 7, 4.

Crossrefs

Programs

Formula

a(n) = A060819(n)*A060819(n+2).
a(2n) = n*(n+1)/2 = A000217(n).
a(2n+1) = (2*n+1)*(2*n+3) = A000466(n+1).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6), n>5.
a(n+1) - a(n) = (7*(-1)^n *(2*n^2+6*n+3) +18*n +27)/16.
a(n) = A142705(n) / A000034(n+1).
a(n) = A005563(n) / A010689(n+1). - Franklin T. Adams-Watters, Oct 21 2011
G.f. x*(3 +x +6*x^2 -x^4)/(1-x^2)^3. - R. J. Mathar, Oct 25 2011
a(n)*a(n+1) = a(A028552(n)) = A050534(n+2). - Bruno Berselli, Oct 26 2011
a(n) = numerator( binomial((n+2)/2,2) ). - Wesley Ivan Hurt, Oct 16 2013
E.g.f.: x*((24+x)*cosh(x) + (3+8*x)*sinh(x))/8. - G. C. Greubel, Sep 20 2018
Sum_{n>=1} 1/a(n) = 5/2. - Amiram Eldar, Aug 12 2022

A181407 a(n) = (n-4)*(n-3)*2^(n-2).

Original entry on oeis.org

3, 3, 2, 0, 0, 16, 96, 384, 1280, 3840, 10752, 28672, 73728, 184320, 450560, 1081344, 2555904, 5963776, 13762560, 31457280, 71303168, 160432128, 358612992, 796917760, 1761607680, 3875536896, 8489271296, 18522046464, 40265318400, 87241523200, 188441690112
Offset: 0

Views

Author

Paul Curtz, Jan 28 2011

Keywords

Comments

Binomial transform of (3, 0, -1, followed by A005563).
The sequence and its successive differences are:
3, 3, 2, 0, 0, 16, 96, 384, a(n),
0, -1, -2, 0, 16, 80, 288, 896, A178987,
-1, -1, 2, 16, 64, 208, 608, 2688, -A127276,
0, 3, 14, 48, 144, 400, 1056, 2688, A176027,
3, 11, 34, 96, 256, 656, 1632, 3968, A084266(n+1)
8, 23, 62, 160, 400, 976, 2336, 5504,
15, 39, 98, 240, 576, 1360, 3168, 7296.
Division of the k-th column by abs(A174882(k)) gives
3, 3, 1, 0, 0, 1, 3, 3, 5, 15, 21, 14, A064038(n-3),
0, -1, -1, 0, 1, 5, 9, 7, 10, 27, 35, 22, A160050(n-3),
-1, -1, 1, 2, 4, 13, 19, 13, 17, 43, 53, 32, A176126,
0, 3, 7, 6, 9, 25, 33, 21, 26, 63, 75, 44, A178242,
3, 11, 17, 12, 16, 41, 51, 31, 37, 87, 101, 58,
8 23, 31, 20, 25, 61, 73, 43, 50, 115, 131, 74,
15, 39, 49, 30, 36, 85, 99, 57, 65, 147, 165, 92.

Crossrefs

Programs

  • GAP
    List([0..40], n-> (n-4)*(n-3)*2^(n-2)); # G. C. Greubel, Feb 21 2019
  • Magma
    [(n-4)*(n-3)*2^(n-2): n in [0..40] ]; // Vincenzo Librandi, Feb 01 2011
    
  • Mathematica
    Table[(n-4)*(n-3)*2^(n-2), {n,0,40}] (* G. C. Greubel, Feb 21 2019 *)
  • PARI
    vector(40, n, n--; (n-4)*(n-3)*2^(n-2)) \\ G. C. Greubel, Feb 21 2019
    
  • Sage
    [(n-4)*(n-3)*2^(n-2) for n in (0..40)] # G. C. Greubel, Feb 21 2019
    

Formula

a(n) = 16*A001788(n-4).
a(n+1) - a(n) = A178987(n).
G.f.: (3 - 15*x + 20*x^2) / (1-2*x)^3. - R. J. Mathar, Jan 30 2011
E.g.f.: (x^2 - 3*x + 3)*exp(2*x). - G. C. Greubel, Feb 21 2019

A182868 a(n) = -1 + n + 4*n^2.

Original entry on oeis.org

-1, 4, 17, 38, 67, 104, 149, 202, 263, 332, 409, 494, 587, 688, 797, 914, 1039, 1172, 1313, 1462, 1619, 1784, 1957, 2138, 2327, 2524, 2729, 2942, 3163, 3392, 3629, 3874, 4127, 4388, 4657, 4934, 5219, 5512, 5813, 6122, 6439, 6764, 7097, 7438, 7787, 8144, 8509, 8882, 9263, 9652
Offset: 0

Views

Author

Paul Curtz, Feb 01 2011

Keywords

Comments

First quadrisection of A176126(n). Take clockwise (square) spiral from A023443(n)=n-1: a(n) is on the negative x-axis. Fourth quadrisection (-1-n+4*n^2) is on the negative y-axis.
Conjecture: the 4 quadrisections of (the family) A064038, A160050, A176126, A178242 (see A181407) come from square spiral.
a(n) mod 9 has period 9: 8,4,8,2,4,5,5,4,2. a(n) mod 10 has period 10: 9,4,7,8,7,4,9,2,3,2. Each polynomial modulo some constant c has a period of length c (and perhaps shorter ones). - Paul Curtz and Bruno Berselli, Feb 05 2011

Programs

Formula

a(n) = A176126(4*n).
a(n) = 4*n^2 + n - 1.
a(n) = a(n-1) - 3 + 8*n.
a(n) = 2*a(n) - a(n-2) + 8.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -(1 - 7*x - 2*x^2)/(1-x)^3. - Bruno Berselli, Feb 05 2011

A215189 Array t(n,k) of the family ((n+k)/gcd(n+k,4))*(n/gcd(n,4)), read by antidiagonals.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 9, 3, 3, 0, 1, 3, 1, 1, 0, 25, 5, 15, 5, 5, 0, 9, 15, 3, 9, 3, 3, 0, 49, 21, 35, 7, 21, 7, 7, 0, 4, 14, 6, 10, 2, 6, 2, 2, 0, 81, 18, 63, 27, 45, 9, 27, 9, 9, 0, 25, 45, 10, 35, 15, 25, 5, 15, 5, 5, 0, 121, 55, 99, 22, 77, 33, 55, 11, 33, 11, 11, 0, 9, 33, 15, 27, 6, 21, 9, 15, 3, 9, 3, 3, 0
Offset: 0

Views

Author

Jean-François Alcover, Jun 12 2013

Keywords

Comments

Identification of rows and columns:
Row 2, n=1: A060819,
row 3, n=2: A060819 (shifted),
row 4, n=3: A068219,
row 5, n=4: A060819 (shifted),
row 6, n=5: A060819 (shifted and multiplied by 5),
row 7, n=6: A068219 (shifted),
row 8, n=7: A060819 (shifted and multiplied by 7);
column 1, k=0: A181318,
column 2, k=1: A064038,
column 3, k=2: A198148,
column 4, k=3: A160050,
column 5, k=4: A061037,
column 6, k=5: A178242,
column 7, k=6: A217366,
column 8, k=7: A217367.
This array is the transposition of the array given by Paul Curtz in the comments in A181318.

Examples

			Array begins:
   0,  0,  0,  0,  0,  0,  0, ...
   1,  1,  3,  1,  5,  3,  7, ...
   1,  3,  1,  5,  3,  7,  2, ...
   9,  3, 15,  9, 21,  6, 27, ...
   1,  5,  3,  7,  2,  9,  5, ...
  25, 15, 35, 10, 45, 25, 55, ...
   9, 21,  6, 27, 15, 33,  9, ...
  49, 14, 63, 35, 77, 21, 91, ...
  ...
Triangle begins:
    0;
    1,  0;
    1,  1,  0;
    9,  3,  3,  0;
    1,  3,  1,  1,  0;
   25,  5, 15,  5,  5,  0;
    9, 15,  3,  9,  3,  3,  0;
   49, 21, 35,  7, 21,  7,  7,  0;
    4, 14,  6, 10,  2,  6,  2,  2,  0;
   81, 18, 63, 27, 45,  9, 27,  9,  9,  0;
   25, 45, 10, 35, 15, 25,  5, 15,  5,  5,  0;
  121, 55, 99, 22, 77, 33, 55, 11, 33, 11, 11,  0;
    9, 33, 15, 27,  6, 21,  9, 15,  3,  9,  3,  3,  0;
  ...
		

Crossrefs

Programs

  • Magma
    /* As triangle: */ [[(n-k)/GCD(n-k, 4)*n/GCD(n, 4): k in [0..n]]: n in [0..12]]; // Bruno Berselli, Jun 13 2013
  • Mathematica
    t[n_, k_] := (n+k)/GCD[n+k, 4]*n/GCD[n, 4];  Table[t[n-k, k], {n, 0, 12}, {k, 0, n}] // Flatten

Formula

t(n,k) = ((n+k)/gcd(n+k,4))*(n/gcd(n,4)).
Showing 1-6 of 6 results.