A343599 T(n,k) is the coordination number of the (n+1)-dimensional cubic lattice for radius k; triangle read by rows, n>=0, 0<=k<=n.
1, 1, 4, 1, 6, 18, 1, 8, 32, 88, 1, 10, 50, 170, 450, 1, 12, 72, 292, 912, 2364, 1, 14, 98, 462, 1666, 4942, 12642, 1, 16, 128, 688, 2816, 9424, 27008, 68464, 1, 18, 162, 978, 4482, 16722, 53154, 148626, 374274, 1, 20, 200, 1340, 6800, 28004, 97880, 299660, 822560, 2060980, 1, 22, 242, 1782, 9922, 44726, 170610, 568150, 1690370, 4573910, 11414898
Offset: 0
Examples
The full array starts 1 2 2 2 2 2 2 2 2 1 4 8 12 16 20 24 28 32 1 6 18 38 66 102 146 198 258 1 8 32 88 192 360 608 952 1408 1 10 50 170 450 1002 1970 3530 5890 1 12 72 292 912 2364 5336 10836 20256 1 14 98 462 1666 4942 12642 28814 59906 1 16 128 688 2816 9424 27008 68464 157184 1 18 162 978 4482 16722 53154 148626 374274
Links
- J. Schroder, Generalized Schroder Numbers and the Rotation principle, J. Int. Seq. 10 (2007) # 07.7.7, Theorem 4.2.
Crossrefs
Programs
-
Maple
A343599 := proc(n,k) local g,x,y ; g := (1+y)/(1-x-y-x*y) ; coeftayl(%,x=0,n) ; coeftayl(%,y=0,k) ; end proc:
-
Mathematica
T[n_, k_] := Module[{x, y}, SeriesCoefficient[(1 + y)/(1 - x - y - x*y), {x, 0, n}] // SeriesCoefficient[#, {y, 0, k}]&]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 16 2023 *)