A343608 a(n) = [n/5]*[n/5 - 1]*(3n - 10[n/5 + 1])/6, where [.] = floor: upper bound for minimum number of monochromatic triangles in a 3-edge-colored complete graph K_n.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 8, 11, 14, 17, 20, 26, 32, 38, 44, 50, 60, 70, 80, 90, 100, 115, 130, 145, 160, 175, 196, 217, 238, 259, 280, 308, 336, 364, 392, 420, 456, 492, 528, 564, 600, 645, 690, 735, 780, 825, 880, 935, 990, 1045, 1100, 1166
Offset: 0
Keywords
Examples
a(17) = [17/5]*[17/5 - 1]*(3*17 - 10[17/5 + 1])/6 = 3*2*11/6 = 11, which is the number of monochromatic triangles obtained by coloring the edges of the complete graph K_17 as follows: edges (i,j) with mod(j-i,5) in {1,4} get color 1, edges (i,j) with mod(j-i,5) in {2,3} get color 2, and edges (i,j) with mod(j-i,5) = 0 get color 3. The minimum number of monochromatic triangles in an edge-coloring of K_17 with 3 colors turns out to be 5 <= 11.
Links
- James Cummings, Daniel Král', Florian Pfender, Konrad Sperfeld, Andrew Treglown, Michael Young, Monochromatic triangles in three-coloured graphs, Journal of Combinatorial Theory B 103 no. 4 (2013) 489-503 (also: arXiv:1206.1987).
- Al Zimmermann, Programming Contest: Monochromatic Triangles, June 2021.
Programs
-
PARI
apply( {A343608(n)=n\5*(n\5-1)*(n-10+n%5*2)/6}, [1..55])
Formula
Extensions
Definition corrected following an observation by Rob Pratt, Jun 28 2021
Comments