A343614 Decimal expansion of P_{3,2}(4) = Sum 1/p^4 over primes == 2 (mod 3).
0, 6, 4, 1, 8, 6, 1, 4, 5, 6, 9, 6, 5, 5, 7, 7, 7, 8, 9, 9, 0, 0, 9, 9, 0, 8, 6, 5, 8, 7, 4, 0, 2, 7, 3, 6, 8, 0, 9, 7, 5, 6, 3, 6, 2, 3, 4, 8, 6, 8, 0, 6, 4, 0, 8, 8, 4, 6, 2, 5, 4, 9, 2, 2, 5, 0, 6, 2, 1, 9, 1, 2, 6, 2, 1, 9, 3, 8, 9, 9, 8, 6, 4, 7, 9, 6, 5, 5, 2, 6, 9, 1, 6, 3, 8, 2, 2, 4, 0, 7
Offset: 0
Examples
P_{3,2}(4) = 0.06418614569655777899009908658740273681...
Links
- R. J. Mathar, Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015.
- OEIS index to entries related to the (prime) zeta function.
Crossrefs
Programs
-
PARI
s=0;forprimestep(p=2,1e8,3,s+=1./p^4);s \\ For illustration: using primes up to 10^N gives about 3N+2 (= 26 for N=8) correct digits.
-
PARI
A343614_upto(N=100)={localprec(N+5); digits((PrimeZeta32(4)+1)\.1^N)[^1]} \\ see for the function PrimeZeta32.
Comments