A343636 10^n + a(n) is the smallest (n+1)-digit initial member of a prime sextuplet, or a(n) = 0 if no such number exists.
6, 87, 0, 0, 6057, 0, 91257, 526557, 12710877, 2054787, 10234947, 6222567, 33407547, 6589467, 44514957, 587445747, 113139567, 816858057, 210160347, 896654097, 1523730387, 1048338207, 1309977027, 2095519077, 3453564567, 1143089517, 735261237, 723151317, 99411447, 77882127
Offset: 0
Examples
a(0) = 6 because A022008(1) = 7 = 10^0 + 6 is the start of the smallest prime sextuplet, starting with a 1-digit prime. a(1) = 87 because A022008(2) = 97 = 10^1 + 87 is the start of the smallest prime sextuplet starting with a 2-digit prime. a(n) = 0 iff n = 2, 3 or 5, because there is no prime sextuplet with members having 3, 4 or 6 digits. a(4) = 6057 because A022008(3) = 16057 = 10^4 + 6057 is the start of the smallest prime sextuplet made of 5-digit primes.
Links
- M. F. Hasler, Table of n, a(n) for n = 0..299
- Norman Luhn, Primzahltupel, prime k-tuple: Smallest-n-digit-prime-sexuplets, on mathematikalpha.de, 2020
Crossrefs
Cf. A022008 (start of prime sextuplets).
Programs
-
PARI
apply( {A343636(n,D=[16,12,10,6,4])=forprime(p=10^n, 10^(n+1), foreach(D, d, ispseudoprime(p+d)||next(2));return(p-10^n))}, [0..11]) \\ For illustration; unoptimized code, very fast only for n < 12.
Comments