A343637 10^n + a(n) is the least (n+1)-digit prime member of a prime septuplet, or a(n) = 0 if no such number exists.
0, 1, 0, 4639, 78799, 65701, 68701, 1900501, 24066079, 12986041, 5758291, 63497419, 126795511, 85452991, 693558301, 1539113749, 1265954431, 959416471, 8269773991, 620669029, 9487038451, 1024481911, 8285411491, 21631441411, 15981152869, 23307738889, 32551582849, 114332503171
Offset: 0
Examples
a(0) = 0 because no single-digit prime starts a prime septuplet. a(1) = 1 because 10^1 + 1 = 11 = A022009(1) is the first member of the smallest (2-digit) prime septuplet {11, 13, 17, 19, 23, 29, 31} (of the first type). a(2) = 0 because there is no prime septuplet starting with a 3-digit prime. a(3) = 4639 because 10^3 + a(3) = 5639 = A022010(1) is the first 4-digit initial member of a prime septuplet, which happens to be of the second type, D = {0, 2, 8, 12, 14, 18, 20}. Similarly, 10^4 + a(4) = 88799 = A022010(2) starts the smallest 5-digit prime septuplet. For all subsequent terms, a(n) < 10^n (conjectured), so the primes are of the form 10...0XXX where XXX = a(n).
Links
- M. F. Hasler, Table of n, a(n) for n = 0..199
- Norman Luhn, Primzahltupel, prime k-tuple: Smallest-n-digit-prime-septuplets, on mathematikalpha.de, Feb 02 2020
Crossrefs
Programs
-
PARI
apply( {A343637(n,D=[2,6,8,12,14,18,20],X=2^6+2^14)=forprime(p=10^n, 10^(n+1), my(t=2); foreach(D, d, ispseudoprime(p+d)||(t-- && bittest(X,d))||next(2));return(p-10^n))}, [0..10]) \\ For illustration; unoptimized code, becomes slow for n >= 11.
Comments