cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A022009 Initial members of prime septuplets (p, p+2, p+6, p+8, p+12, p+18, p+20).

Original entry on oeis.org

11, 165701, 1068701, 11900501, 15760091, 18504371, 21036131, 25658441, 39431921, 45002591, 67816361, 86818211, 93625991, 124716071, 136261241, 140117051, 154635191, 162189101, 182403491, 186484211, 187029371, 190514321, 198453371
Offset: 1

Views

Author

Keywords

Comments

All terms are congruent to 11 (modulo 210). - Matt C. Anderson, May 26 2015
Also the terms k of A276848 for which k == 1 (mod 10), see the comment in A276848 and A276826. All terms are obviously also congruent to 11 (modulo 30). - Vladimir Shevelev, Sep 21 2016
See A343637 for the least prime septuplets > 10^n, n >= 0. - M. F. Hasler, Aug 04 2021

Crossrefs

Cf. A022010 (septuplets of the second type), A182387, A276826, A276848, A343637 (septuplet following 10^n).

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^8) | forall{p+r: r in [2,6,8,12,18,20] | IsPrime(p+r)}]; // Vincenzo Librandi, Oct 01 2015
  • Mathematica
    Transpose[Select[Partition[Prime[Range[10400000]],7,1],Differences[#] == {2,4,2,4,6,2}&]][[1]] (* Harvey P. Dale, Jul 13 2014 *)
    Select[Prime[Range[2 10^8]], Union[PrimeQ[# + {2, 6, 8, 12, 18, 20}]] == {True} &] (* Vincenzo Librandi, Oct 01 2015 *)
  • PARI
    nextcomposite(n)=if(n<4, return(4)); n=ceil(n); if(isprime(n), n+1, n)
       is(n)=if(n%30!=11 || !isprime(n) || !isprime(n+2), return(0)); my(p=n, q=n+2, k=2, f); while(p!=q && q-p<7, f=if(isprime(k++), nextprime, nextcomposite); p=f(p+1); q=f(q+1)); p==q \\ Charles R Greathouse IV, Sep 30 2016
    
  • PARI
    select( {is_A022009(n)=n%210==11&&!foreach([20,18,12,8,6,2,0],d,isprime(n+d)||return)}, [11+k*210|k<-[0..10^5]]) \\ M. F. Hasler, Aug 04 2021
    
  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(1,1e9, 2,6,8,12,18,20); # Dana Jacobsen, Sep 30 2015
    

Formula

a(n) = 210*A182387(n) + 11. - Hugo Pfoertner, Nov 18 2022

A022010 Initial members of prime septuplets (p, p+2, p+8, p+12, p+14, p+18, p+20).

Original entry on oeis.org

5639, 88799, 284729, 626609, 855719, 1146779, 6560999, 7540439, 8573429, 17843459, 19089599, 24001709, 42981929, 43534019, 69156539, 74266259, 79208399, 80427029, 84104549, 87988709, 124066079, 128469149, 144214319, 157131419, 208729049, 218033729
Offset: 1

Views

Author

Keywords

Comments

All terms are congruent to 179 (modulo 210). - Matt C. Anderson, May 26 2015

Examples

			a(100) = 2526962939, a(1000) = 80752495919, a(10000) = 2010407120789, a(100000) = 42609827234069, a(1000000) = 822249634821059. See illustration for asymptotic behavior. - _Hugo Pfoertner_, Jun 15 2020
		

Crossrefs

Cf. A022009 (prime septuplets of the first type), A332493.
Cf. A257124 (union of this and A022009), A343637 (septuplet following 10^n).
Cf. A357889.

Programs

  • Magma
    [p: p in PrimesUpTo(3*10^8) | forall{p+r: r in [2, 8, 12, 14, 18, 20] | IsPrime(p+r)}]; // Vincenzo Librandi, Oct 01 2015
    
  • Mathematica
    Select[Prime[Range[2 10^8]], Union[PrimeQ[# + {2, 8, 12, 14, 18, 20}]] == {True} &] (* Vincenzo Librandi, Oct 01 2015 *)
    Select[Partition[Prime[Range[12021000]],7,1],Differences[#]=={2,6,4,2,4,2}&][[All,1]] (* or *) Select[Range[179,219*10^6,210], AllTrue[ #+{0,2,8,12,14,18,20},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 04 2019 *)
  • PARI
    forprime(p=2, 10^30, if (isprime(p+2) && isprime(p+8) && isprime(p+12) && isprime(p+14) && isprime(p+18) && isprime(p+20), print1(p", "))) \\ Altug Alkan, Oct 01 2015. [This can be made 2x faster by inserting "p%210==179 &&" before or after "if(". - M. F. Hasler, Aug 04 2021]
  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(1,1e9, 2,8,12,14,18,20); # Dana Jacobsen, Sep 30 2015
    

Formula

a(n) = 210*A357889(n) + 179. - Hugo Pfoertner, Nov 18 2022

Extensions

More terms from a Maple program by Matt C. Anderson, Dec 05 2013

A257124 Initial members of prime septuplets.

Original entry on oeis.org

11, 5639, 88799, 165701, 284729, 626609, 855719, 1068701, 1146779, 6560999, 7540439, 8573429, 11900501, 15760091, 17843459, 18504371, 19089599, 21036131, 24001709, 25658441, 39431921, 42981929, 43534019, 45002591, 67816361, 69156539, 74266259, 79208399, 80427029, 84104549, 86818211, 87988709, 93625991, 124066079
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Apr 16 2015

Keywords

Crossrefs

Initial members of all of the first prime k-tuplets:
twin primes: A001359.
prime triples: A007529 out of A022004, A022005.
prime quadruplets: A007530.
prime 5-tuples: A086140 out of A022007, A022006.
prime sextuplets: A022008.
prime septuplets: this sequence out of A022009, A022010.
prime octuplets: A065706 out of A022011, A022012, A022013.
prime nonuplets: A257125 out of A022547, A022548, A022545, A022546.
prime decaplets: A257127 out of A027569, A027570.
prime 11-tuplets: A257129 out of A213646, A213647.
prime 12-tuplets: A257131 out of A213601, A213645.
prime 13-tuplets: A257135 out of A214947, A257137, A257138, A257139, A257140, A257141.
prime 14-tuplets: A257166 out of A257167, A257168.
prime 15-tuplets: A257169 out of A257304, A257305, A257306, A257307.
prime 16-tuplets: A257308 out of A257369, A257370.
prime 17-tuplets: A257373 out of A257374, A257375, A257376, A257377.
Cf. A343637 (distance from 10^n to the next septuplet).
Cf. A100418.

Formula

Disjoint union of A022009 and A022010. - M. F. Hasler, Aug 04 2021

A343635 10^n + a(n) is the least (n+1)-digit prime member of a prime 5-tuple, or a(n) = 0 if no such number exists.

Original entry on oeis.org

4, 1, 1, 481, 5727, 1107, 8851, 18027, 5457, 408807, 57931, 358531, 274587, 256497, 6111627, 67437, 3246567, 1638811, 8224977, 11687221, 24556351, 3129657, 15602131, 571381, 23034391, 110598987, 26716321, 31722117, 39711931, 5046777, 81054327, 1346611, 44656587
Offset: 0

Views

Author

M. F. Hasler, Jul 17 2021

Keywords

Comments

The smallest (n+1)-digit prime 5-tuple is given by 10^n + a(n) + D, with either D = {0, 2, 6, 8, 12} or D = {0, 4, 6, 10, 12}. N = 0 is the only case where the last member of the 5-tuple has one digit more than the first member.
Numerical evidence strongly suggests the conjecture that 0 < a(n) < 10^n for all n > 0, but not even the existence of infinitely many prime 5-tuples is proved.
Some further isolated terms, due to Norman Luhn et al., giving the start of the smallest 500, 600, 700, ..., 1200 digit quintuplets of first or second type:
a(499) = min(58195471283341, 69672492141807),
a(599) = min(319491304676641, 12754947401547),
a(699) = min(2254633393747621, 209264286017367),
a(799) = min(2117758391972791, 1299258655252617),
a(899) = min(2365663735968811, 1484244113736867),
a(999) = min(3554007760224751, 3818999670116007),
a(1099) = min(26317044823878361, 15720821612555937),
a(1199) = min(20483870459152351, 7033048489975137).
Terms through a(399) may be determined by taking the minima of those in the linked tables for quintuplets by Norman Luhn et al. - Michael S. Branicky, Jul 24 2021
The first member of the quintuplets of the first type always ends in digit 1 (except for the 5-tuple (5, 7, 11, 13, 17) corresponding to a(0)), for the second type it always ends in digit 7. Therefore all a(n), n > 0, end in a digit 1 or 7, which indicates the type of the 5-tuple, i.e., the set D that has to be added to 10^n + a(n) to get the whole 5-tuple. - M. F. Hasler, Aug 04 2021

Examples

			a(0) = 4 because {5, 7, 11, 13, 17} is the smallest prime 5-tuple and it starts with the single-digit prime 10^0 + a(0) = 5 = A022006(1).
a(1) = 1 because 10^1 + 1 = 11 = A022006(2) is the 2-digit prime to start a prime 5-tuple {11, 13, 17, 19, 23}, again of the first type.
a(2) = 1 and a(3) = 481 because 10^2 + 1 = 101 = A022006(3) and 10^3 + 481 = 1481 = A022006(4) are the smallest 3-digit, resp. 4-digit, initial members of a prime 5-tuple, both again of the first type.
a(4) = 5727 because 10^4 + 5727 = 15727 = A022007(6) is the smallest 5-digit initial member of a prime 5-tuple, now of the second type.
It appears that for all n > 0, a(n) < 10^n, so that the primes are of the form 10...0XXX where XXX = a(n) and 0...0 stands for a string of zero or more digits 0.
		

Crossrefs

Cf. A022006 and A022007 (initial members of prime 5-tuples of first and second type).
Cf. A343636, A343637 (analog for sextuplets and septuplets).

Programs

  • PARI
    apply( {A343635(n,q=[1..4],i=0)=forprime(p=10^n,, (q[1+i]+12==q[i++]=p) && return(p-12-10^n); i>3 && i=0)}, [0..15]) \\ Shorter but slightly slower (?)
    
  • PARI
    apply( {A343635(n, i=ispseudoprime, q)=forprime(p=10^n,, i(p+12) && i(p+6) && (p+6 > q=nextprime(p+2)) && i(q+6) && return(p-10^n))}, [0..15])
    
  • Python
    from sympy import nextprime
    def a(n):
        p = nextprime(10**n)
        q = nextprime(p); r = nextprime(q); s = nextprime(r); t = nextprime(s)
        while p < 10**(n+1):
            if t - p == 12: return p - 10**n
            p, q, r, s, t = q, r, s, t, nextprime(t)
        return 0
    print([a(n) for n in range(14)]) # Michael S. Branicky, Jul 24 2021
Showing 1-4 of 4 results.