A022010
Initial members of prime septuplets (p, p+2, p+8, p+12, p+14, p+18, p+20).
Original entry on oeis.org
5639, 88799, 284729, 626609, 855719, 1146779, 6560999, 7540439, 8573429, 17843459, 19089599, 24001709, 42981929, 43534019, 69156539, 74266259, 79208399, 80427029, 84104549, 87988709, 124066079, 128469149, 144214319, 157131419, 208729049, 218033729
Offset: 1
a(100) = 2526962939, a(1000) = 80752495919, a(10000) = 2010407120789, a(100000) = 42609827234069, a(1000000) = 822249634821059. See illustration for asymptotic behavior. - _Hugo Pfoertner_, Jun 15 2020
-
[p: p in PrimesUpTo(3*10^8) | forall{p+r: r in [2, 8, 12, 14, 18, 20] | IsPrime(p+r)}]; // Vincenzo Librandi, Oct 01 2015
-
Select[Prime[Range[2 10^8]], Union[PrimeQ[# + {2, 8, 12, 14, 18, 20}]] == {True} &] (* Vincenzo Librandi, Oct 01 2015 *)
Select[Partition[Prime[Range[12021000]],7,1],Differences[#]=={2,6,4,2,4,2}&][[All,1]] (* or *) Select[Range[179,219*10^6,210], AllTrue[ #+{0,2,8,12,14,18,20},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 04 2019 *)
-
forprime(p=2, 10^30, if (isprime(p+2) && isprime(p+8) && isprime(p+12) && isprime(p+14) && isprime(p+18) && isprime(p+20), print1(p", "))) \\ Altug Alkan, Oct 01 2015. [This can be made 2x faster by inserting "p%210==179 &&" before or after "if(". - M. F. Hasler, Aug 04 2021]
-
use ntheory ":all"; say for sieve_prime_cluster(1,1e9, 2,8,12,14,18,20); # Dana Jacobsen, Sep 30 2015
A065706
Least member p1 of prime octuplets (p1, p2, p3, ..., p8 = p1 + 26), the eight p's being consecutive primes.
Original entry on oeis.org
11, 17, 1277, 88793, 113147, 284723, 855713, 1146773, 2580647, 6560993, 15760091, 20737877, 25658441, 58208387, 69156533, 73373537, 74266253, 76170527, 93625991, 100658627, 134764997, 137943347, 165531257, 171958667
Offset: 1
a(3) = 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303 = 1277+26 are primes.
See
A257124 (prime septuplets) with an overview of prime k-tuplets.
-
{ n=0; p1=2; p8=19; for (m=1, 10^12, p1=nextprime(p1+1); p8=nextprime(p8+1); if (p8 - p1 == 26, write("b065706.txt", n++, " ", p1); if (n==100, return)) ) } \\ Harry J. Smith, Oct 26 2009
-
use ntheory ":all"; my($s,$e,$i,%h)=(1,1e10,0); undef @h{sieve_prime_cluster($s,$e,2,6,8,12,18,20,26), sieve_prime_cluster($s,$e,2,6,12,14,20,24,26), sieve_prime_cluster($s,$e,6,8,14,18,20,24,26)}; say ++$i," $" for sort {$a<=>$b} keys %h; # _Dana Jacobsen, Oct 10 2015
A257125
Initial members of prime 9-tuplets (or nonuplets).
Original entry on oeis.org
7, 11, 13, 17, 1277, 88789, 113143, 113147, 855709, 74266249, 182403491, 226449521, 252277007, 408936947, 521481197, 626927443, 910935911, 964669609, 1042090781, 1116452627, 1209950867, 1422475909, 1459270271, 1645175087, 2117861719, 2335215973, 2558211559, 2843348351, 2873599429, 2966003057, 3447123283, 3947480417
Offset: 1
Initial members of all of the first prime k-tuplets:
-
[NthPrime(n): n in [0..2*10^4] | NthPrime(n+8) eq (NthPrime(n) + 30)]; // Vincenzo Librandi, Jul 08 2015
-
{p, q, r, s, t, u, v, w, x} = Prime@ Range@ 9; lst = {}; While[p < 1000000001, If[p + 30 == x, AppendTo[lst, p]; Print@ p]; {p, q, r, s, t, u, v, w, x} = {q, r, s, t, u, v, w, x, NextPrime@ x}]; lst (* Robert G. Wilson v, Jul 06 2015 *)
Select[Partition[Prime[Range[5 10^6]],9,1],#[[1]]+30==#[[9]]&][[;;,1]] (* The program generates the first 10 terms of the sequence. To generate more, increase the Range constant. *) (* Harvey P. Dale, Jul 01 2024 *)
-
main(size)=v=vector(size); i=0; m=1; while(iAnders Hellström, Jul 08 2015
A257127
Initial members of prime 10-tuplets (or decaplets).
Original entry on oeis.org
11, 9853497737, 21956291867, 22741837817, 33081664151, 83122625471, 164444511587, 179590045487, 217999764107, 231255798857, 242360943257, 294920291201, 573459229151, 663903555851, 666413245007, 688697679401, 696391309697, 730121110331, 867132039857, 974275568237, 976136848847, 1002263588297
Offset: 1
Initial members of all of the first prime k-tuplets:
A257129
Initial members of prime 11-tuples.
Original entry on oeis.org
11, 1418575498573, 2118274828903, 4396774576273, 6368171154193, 6953798916913, 7908189600581, 10527733922591, 12640876669691, 27899359258003, 28138953913303, 34460918582323, 38545620633251, 40362095929003, 42023308245613, 43564522846961, 44058461657443, 60268613366231, 60596839933361, 61062361183903, 71431649320301
Offset: 1
Initial members of all of the first prime k-tuples:
A257131
Initial members of prime 12-tuplets.
Original entry on oeis.org
11, 1418575498567, 27899359257997, 34460918582317, 76075560855367, 186460616596327, 218021188549237, 234280497145537, 282854319391717, 345120905374087, 346117552180627, 380284918609481, 437163765888581, 604439135284057, 701889794782061, 727417501795057, 980125031081081, 1041814617748747, 1090754719898917, 1277156391416021, 1487854607298791
Offset: 1
Initial members of all of the first prime k-tuplets:
A257135
Initial members of prime 13-tuplets.
Original entry on oeis.org
11, 13, 10527733922579, 186460616596321, 1707898733581273, 3266590043460823, 4289907938811613, 4422879865247923, 5693002600430263, 7582919852522851, 7697168877290909, 7933248530182091, 10071192314217869, 10907318641689703, 11987120084474369, 15991086371740199, 20475715985020181, 21817283854511261, 21817283854511263, 22443709342850669, 28561589689237439, 31979851757518501
Offset: 1
Initial members of all of the first prime k-tuplets:
A257137
Numbers n such that n, n+4, n+6, n+10, n+16, n+18, n+24, n+28, n+30, n+34, n+40, n+46 and n+48 are all prime.
Original entry on oeis.org
13, 4289907938811613, 5693002600430263, 21817283854511263, 48290946353555023, 51165618791484133, 53094081535451893, 70219878257874463, 98633358468021313, 99142644093930373, 104814760374339133, 166784569423739203, 167841416726358493, 184601252515266523, 263331429949004353, 272039012072134243, 339094624362619243, 363319822006646623, 363760043662280383, 437335541550793003, 455289126169953193
Offset: 1
Initial members of all of the first prime k-tuplets:
-
is(n)=isp=isprime; isp(n) && isp(n+4) && isp(n+6) && isp(n+10) && isp(n+16) && isp(n+18) && isp(n+24) && isp(n+28) && isp(n+30) && isp(n+34) && isp(n+40) && isp(n+46) && isp(n+48) \\ Anders Hellström, Sep 05 2015
-
use ntheory ":all"; say for sieve_prime_cluster(1,10**16, 4,6,10,16,18,24,28,30,34,40,46,48); # Dana Jacobsen, Oct 07 2015
A257138
Numbers n such that n, n+4, n+6, n+10, n+16, n+18, n+24, n+28, n+30, n+34, n+36, n+46 and n+48 are all prime.
Original entry on oeis.org
1707898733581273, 3266590043460823, 4422879865247923, 10907318641689703, 32472302129057023, 52590359764282573, 60229684381540753, 67893346321234513, 93179596929433093, 115458868925574253, 140563537593599353, 142977538681261363, 148877505784397623, 166362638531783773, 232442516762530153, 236585787518684683, 255933372890105143, 317294052871840123, 325853825645632363, 337188071215909993, 344447962857168403
Offset: 1
Initial members of all of the first prime k-tuplets:
-
Q=isprime;
isok(n) = Q(n) && Q(n+4) && Q(n+6) && Q(n+10) && Q(n+16) && Q(n+18) && Q(n+24) && Q(n+28) && Q(n+30) && Q(n+34) && Q(n+36) && Q(n+46) && Q(n+48); \\ Michel Marcus, Aug 04 2015
-
use ntheory ":all"; say for sieve_prime_cluster(1, 10**16, 4,6,10,16,18,24,28,30,34,36,46,48); # Dana Jacobsen, Oct 09 2015
A257139
Numbers n such that n, n+2, n+6, n+8, n+12, n+18, n+20, n+26, n+30, n+32, n+36, n+42 and n+48 are all prime.
Original entry on oeis.org
11, 7933248530182091, 20475715985020181, 21817283854511261, 33502273017038711, 40257009922154141, 49242777550551701, 49600456951571411, 75093141517810301, 84653373093824651, 119308586807395871, 129037438367672951, 129706953139869221, 151242381725881331, 158947009165390331, 161216594737343261, 167317340088093311, 176587730173540571, 178444395317213141, 197053322268438521, 301854920123441801
Offset: 1
Initial members of all of the first prime k-tuplets:
-
use ntheory ":all"; say for sieve_prime_cluster(1,10**16,2,6,8,12,18,20,26,30,32,36,42,48); # Dana Jacobsen, Oct 10 2015
Showing 1-10 of 28 results.
Comments