A343656 Array read by antidiagonals where A(n,k) is the number of divisors of n^k.
1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 3, 1, 1, 5, 4, 5, 2, 1, 1, 6, 5, 7, 3, 4, 1, 1, 7, 6, 9, 4, 9, 2, 1, 1, 8, 7, 11, 5, 16, 3, 4, 1, 1, 9, 8, 13, 6, 25, 4, 7, 3, 1, 1, 10, 9, 15, 7, 36, 5, 10, 5, 4, 1, 1, 11, 10, 17, 8, 49, 6, 13, 7, 9, 2, 1, 1, 12, 11, 19, 9, 64, 7, 16, 9, 16, 3, 6, 1
Offset: 1
Examples
Array begins: k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 n=1: 1 1 1 1 1 1 1 1 n=2: 1 2 3 4 5 6 7 8 n=3: 1 2 3 4 5 6 7 8 n=4: 1 3 5 7 9 11 13 15 n=5: 1 2 3 4 5 6 7 8 n=6: 1 4 9 16 25 36 49 64 n=7: 1 2 3 4 5 6 7 8 n=8: 1 4 7 10 13 16 19 22 n=9: 1 3 5 7 9 11 13 15 Triangle begins: 1 1 1 1 2 1 1 3 2 1 1 4 3 3 1 1 5 4 5 2 1 1 6 5 7 3 4 1 1 7 6 9 4 9 2 1 1 8 7 11 5 16 3 4 1 1 9 8 13 6 25 4 7 3 1 1 10 9 15 7 36 5 10 5 4 1 1 11 10 17 8 49 6 13 7 9 2 1 1 12 11 19 9 64 7 16 9 16 3 6 1 1 13 12 21 10 81 8 19 11 25 4 15 2 1 For example, row n = 8 counts the following divisors: 1 64 243 256 125 36 7 1 32 81 128 25 18 1 16 27 64 5 12 8 9 32 1 9 4 3 16 6 2 1 8 4 1 4 3 2 2 1 1
Links
- Seiichi Manyama, Antidiagonals n = 1..140, flattened
Crossrefs
Columns k=1..9 of the array give A000005, A048691, A048785, A344327, A344328, A344329, A343526, A344335, A344336.
Row n = 6 of the array is A000290.
Diagonal n = k of the array is A062319.
Array antidiagonal sums (row sums of the triangle) are A343657.
Dominated by A343658.
A000312 = n^n.
A007318 counts k-sets of elements of {1..n}.
A009998(n,k) = n^k (as an array, offset 1).
A059481 counts k-multisets of elements of {1..n}.
Programs
-
Mathematica
Table[DivisorSigma[0,k^(n-k)],{n,10},{k,n}]
-
PARI
A(n, k) = numdiv(n^k); \\ Seiichi Manyama, May 15 2021
Formula
A(n,k) = Sum_{d|n} k^omega(d). - Seiichi Manyama, May 15 2021
Comments