cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343663 Number of unlabeled binary rooted semi-identity plane trees with 2*n - 1 nodes.

Original entry on oeis.org

1, 1, 2, 4, 12, 34, 108, 344, 1136, 3796, 12920, 44442, 154596, 542336, 1917648, 6825464, 24439008, 87962312, 318087216, 1155090092, 4210494616, 15400782912, 56508464736, 207935588586, 767162495940, 2837260332472, 10516827106016, 39063666532784, 145378611426512
Offset: 1

Views

Author

Gus Wiseman, May 05 2021

Keywords

Comments

In a semi-identity tree, only the non-leaf branches of any given vertex are required to be distinct. Alternatively, a rooted tree is a semi-identity tree if the non-leaf branches of the root are all distinct and are themselves semi-identity trees.

Examples

			The a(1) = 1 through a(5) = 12 trees:
  o  (oo)  ((oo)o)  (((oo)o)o)  ((((oo)o)o)o)
           (o(oo))  ((o(oo))o)  (((o(oo))o)o)
                    (o((oo)o))  (((oo)o)(oo))
                    (o(o(oo)))  ((o((oo)o))o)
                                ((o(o(oo)))o)
                                ((o(oo))(oo))
                                ((oo)((oo)o))
                                ((oo)(o(oo)))
                                (o(((oo)o)o))
                                (o((o(oo))o))
                                (o(o((oo)o)))
                                (o(o(o(oo))))
		

Crossrefs

The not necessarily semi-identity version is A000108.
The non-plane version is A063895, ranked by A339193.
The Matula-Goebel numbers in the non-plane case are A339193.
The not-necessarily binary version is A343937.
A000081 counts unlabeled rooted trees with n nodes.
2*A001190 - 1 counts binary trees, ranked by A111299.
A001190 counts semi-binary trees, ranked by A292050.
A004111 counts identity trees, ranked by A276625.
A306200 counts semi-identity trees, ranked by A306202.
A306201 counts balanced semi-identity trees, ranked by A306203.
A331966 counts lone-child avoiding semi-identity trees, ranked by A331965.

Programs

  • Mathematica
    crsiq[n_]:=Join@@Table[Select[Union[Tuples[crsiq/@ptn]],#=={}||#=={{},{}}||Length[#]==2&&(UnsameQ@@DeleteCases[#,{}])&],{ptn,Join@@Permutations/@IntegerPartitions[n-1]}];
    Table[Length[crsiq[n]],{n,1,11,2}]
    (* Second program: *)
    m = 29; p[_] = 1;
    Do[p[x_] = 1 + x + x (p[x]^2 - p[x^2]) + O[x]^m // Normal, {m}];
    CoefficientList[p[x], x] (* Jean-François Alcover, May 09 2021, after Andrew Howroyd *)
  • PARI
    seq(n)={my(p=O(1)); for(n=1, n, p=1 + x + x*(p^2-subst(p,x,x^2))); Vec(p)} \\ Andrew Howroyd, May 07 2021

Formula

G.f.: x*A(x) where A(x) satisfies A(x) = 1 + x + x*(A(x)^2 - A(x^2)). - Andrew Howroyd, May 07 2021

Extensions

Terms a(13) and beyond from Andrew Howroyd, May 07 2021