A343663 Number of unlabeled binary rooted semi-identity plane trees with 2*n - 1 nodes.
1, 1, 2, 4, 12, 34, 108, 344, 1136, 3796, 12920, 44442, 154596, 542336, 1917648, 6825464, 24439008, 87962312, 318087216, 1155090092, 4210494616, 15400782912, 56508464736, 207935588586, 767162495940, 2837260332472, 10516827106016, 39063666532784, 145378611426512
Offset: 1
Keywords
Examples
The a(1) = 1 through a(5) = 12 trees: o (oo) ((oo)o) (((oo)o)o) ((((oo)o)o)o) (o(oo)) ((o(oo))o) (((o(oo))o)o) (o((oo)o)) (((oo)o)(oo)) (o(o(oo))) ((o((oo)o))o) ((o(o(oo)))o) ((o(oo))(oo)) ((oo)((oo)o)) ((oo)(o(oo))) (o(((oo)o)o)) (o((o(oo))o)) (o(o((oo)o))) (o(o(o(oo))))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- Samuele Giraudo, The combinator M and the Mockingbird lattice, arXiv:2204.03586 [math.CO], 2022.
- Samuele Giraudo, Mockingbird lattices, Séminaire Lotharingien de Combinatoire XX, Proceedings of the 34th Conf. on Formal Power, Series and Algebraic Combinatorics (Bangalore, India, 2022).
Crossrefs
Programs
-
Mathematica
crsiq[n_]:=Join@@Table[Select[Union[Tuples[crsiq/@ptn]],#=={}||#=={{},{}}||Length[#]==2&&(UnsameQ@@DeleteCases[#,{}])&],{ptn,Join@@Permutations/@IntegerPartitions[n-1]}]; Table[Length[crsiq[n]],{n,1,11,2}] (* Second program: *) m = 29; p[_] = 1; Do[p[x_] = 1 + x + x (p[x]^2 - p[x^2]) + O[x]^m // Normal, {m}]; CoefficientList[p[x], x] (* Jean-François Alcover, May 09 2021, after Andrew Howroyd *)
-
PARI
seq(n)={my(p=O(1)); for(n=1, n, p=1 + x + x*(p^2-subst(p,x,x^2))); Vec(p)} \\ Andrew Howroyd, May 07 2021
Formula
G.f.: x*A(x) where A(x) satisfies A(x) = 1 + x + x*(A(x)^2 - A(x^2)). - Andrew Howroyd, May 07 2021
Extensions
Terms a(13) and beyond from Andrew Howroyd, May 07 2021
Comments