cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A343676 Number of n-digit undulating alternating primes.

Original entry on oeis.org

4, 9, 23, 49, 175, 321, 1189, 3025, 12111, 28492, 113409, 251513, 1068440, 2629980, 11690210, 28498852, 128871588, 298890814, 1309837146
Offset: 1

Views

Author

Chai Wah Wu, Apr 25 2021

Keywords

Comments

a(n) is the number of n-digit terms in A343590.
a(n) <= A057333(n).

Crossrefs

Programs

  • Python
    def f(w):
        for s in w:
            for t in range(int(s[-1])+1,10,2):
                yield s+str(t)
    def g(w):
        for s in w:
            for t in range(1-int(s[-1])%2,int(s[-1]),2):
                yield s+str(t)
    def A343676(n):
        c = 0
        for d in '123456789':
            x = d
            for i in range(1,n):
                x = g(x) if i % 2 else f(x)
            c += sum(1 for p in x if isprime(int(p)))
            if n > 1:
                y = d
                for i in range(1,n):
                    y = f(y) if i % 2 else g(y)
                c += sum(1 for p in y if isprime(int(p)))
        return c

Extensions

a(18)-a(19) from Martin Ehrenstein, Apr 27 2021

A343677 Number of (2n+1)-digit undulating alternating palindromic primes.

Original entry on oeis.org

4, 6, 19, 34, 100, 241, 697, 1779, 6590, 16585, 57237, 179291, 591325, 1707010, 6520756, 18271423, 65212230, 210339179, 706823539
Offset: 0

Views

Author

Chai Wah Wu, Apr 25 2021

Keywords

Comments

a(n) is the number of (2n+1)-digit terms in A343675.
a(n) <= A057332(n).

Crossrefs

Programs

  • Python
    from sympy import isprime
    def f(w):
        for s in w:
            for t in range(int(s[-1])+1,10,2):
                yield s+str(t)
    def g(w):
        for s in w:
            for t in range(1-int(s[-1])%2,int(s[-1]),2):
                yield s+str(t)
    def A343677(n):
        if n == 0:
            return 4
        c = 0
        for d in '1379':
            x = d
            for i in range(1,n+1):
                x = g(x) if i % 2 else f(x)
            c += sum(1 for p in x if isprime(int(p+p[-2::-1])))
            y = d
            for i in range(1,n+1):
                y = f(y) if i % 2 else g(y)
            c += sum(1 for p in y if isprime(int(p+p[-2::-1])))
        return c

Extensions

a(17)-a(18) from Chai Wah Wu, May 02 2021
Showing 1-2 of 2 results.