A343680 Niven (or Harshad) numbers which when divided by sum of their digits, give a quotient which is a Zuckerman number.
1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 18, 21, 24, 27, 36, 42, 45, 48, 54, 63, 72, 81, 84, 108, 135, 198, 216, 324, 648, 1008, 1035, 1050, 1152, 1215, 1344, 1380, 1680, 1725, 2016, 2376, 2592, 2625, 2688, 2997, 3675, 3816, 3888, 5616, 5670, 6912, 10008, 10017, 10035, 10044
Offset: 1
Examples
84 is a Niven number as 84/(8+4) = 7, 7/7 = 1 so 7 is a Zuckerman number, and 84 is a term. 108 is a Niven number as 108/(1+0+8) = 12, 12/(1*2) = 6 so 12 is a Zuckerman number, and 108 is a term.
Links
- Giovanni Resta, Zuckerman Numbers, Numbers Aplenty.
Programs
-
Mathematica
zuckQ[n_] := IntegerQ[n] && (prod = Times @@ IntegerDigits[n]) > 0 && Divisible[n, prod]; Select[Range[10^4], zuckQ[#/Plus @@ IntegerDigits[#]] &] (* Amiram Eldar, Apr 26 2021 *)
-
PARI
isz(n) = my(p=vecprod(digits(n))); p && !(n % p); \\ A007602 isok(n) = my(s=sumdigits(n)); !(n%s) && isz(n/s); \\ Michel Marcus, Apr 26 2021
Extensions
More terms from Michel Marcus, Apr 26 2021
Comments