A343683 Primes p1 such that the sum of 9 consecutive primes, p1+p2+p3+p4+p5+p6+p7+p8+p9, and the three sums (p1+p2+p3), (p4+p5+p6), (p7+p8+p9) are all prime numbers.
29, 83, 389, 1151, 2293, 2521, 2699, 2753, 4831, 7121, 9857, 12409, 13679, 24439, 25943, 36083, 43201, 47317, 49037, 49069, 49109, 51829, 51859, 53717, 61471, 64091, 68449, 70271, 77047, 87337, 87911, 90709, 111109, 113173, 114577, 117577, 117889, 118051, 128549, 134837, 149533, 172489
Offset: 1
Keywords
Examples
n=1, p1=29: 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 = 401, 29 + 31 + 37 = 97, 41 + 43 + 47 = 131, 53 + 59 + 61 = 173, all primes.
Crossrefs
Cf. A082251 (primes that are the sum of 9 consecutive primes).
Programs
-
Mathematica
Select[Prime@Range@10000,And@@PrimeQ[Flatten@{Total[s=NextPrime[#,0~Range~8]],Total/@Partition[s,3]}]&] (* Giorgos Kalogeropoulos, Apr 26 2021 *)