A343706 Lesser emirps (A109308) p such that A056964(p) is in A343703.
17, 107, 113, 167, 179, 389, 1031, 1091, 1097, 1109, 1181, 1259, 1439, 1487, 1523, 1583, 1619, 1847, 3023, 3089, 3257, 3347, 3359, 3527, 3719, 7349, 7529, 7577, 7589, 7649, 7949, 9029, 10067, 10151, 10247, 10487, 10739, 10781, 11057, 11423, 11621, 11777, 11897, 11933, 12119, 12227, 12641, 13151
Offset: 1
Examples
a(4) = 167 is a term because 167 and 761 are primes with 167 < 761, and 167+761 = 928 = 32*29 with 3229 and 32+29 = 61 prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Carlos Rivera, Puzzle 1036. P + R(p) such that..., The Prime Puzzles and Problems Connection.
Programs
-
Maple
revdigs:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc: filter:= proc(p) local q,m,d,e; q:= revdigs(p); if q <= p then return false fi; if not isprime(p) or not isprime(q) then return false fi; m:= p+q; for d in numtheory:-divisors(m) do e:= m/d; if isprime(d*10^(1+ilog10(e))+e) and isprime(d+e) then return true fi od; false end proc:
Comments