cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343706 Lesser emirps (A109308) p such that A056964(p) is in A343703.

Original entry on oeis.org

17, 107, 113, 167, 179, 389, 1031, 1091, 1097, 1109, 1181, 1259, 1439, 1487, 1523, 1583, 1619, 1847, 3023, 3089, 3257, 3347, 3359, 3527, 3719, 7349, 7529, 7577, 7589, 7649, 7949, 9029, 10067, 10151, 10247, 10487, 10739, 10781, 11057, 11423, 11621, 11777, 11897, 11933, 12119, 12227, 12641, 13151
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Apr 26 2021

Keywords

Comments

Primes p such that the digit-reversal q = A004086(p) is a prime greater than p, and p+q = x*y for some x and y such that x+y and the concatenation x|y are primes.

Examples

			a(4) = 167 is a term because 167 and 761 are primes with 167 < 761, and 167+761 = 928 = 32*29 with 3229 and 32+29 = 61 prime.
		

Crossrefs

Programs

  • Maple
    revdigs:= proc(n) local L,i;
        L:= convert(n,base,10);
        add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    filter:= proc(p) local q,m,d,e;
       q:= revdigs(p); if q <= p then return false fi;
       if not isprime(p) or not isprime(q) then return false fi;
       m:= p+q;
       for d in numtheory:-divisors(m) do
         e:= m/d;
         if isprime(d*10^(1+ilog10(e))+e) and isprime(d+e) then return true fi
       od;
       false
    end proc: