A343723 a(n) is 1/4 of the number of starting residues r modulo n from which repeated iterations of the mapping r -> r^2 mod n never reach a fixed point.
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 2, 2, 0, 0, 0, 2, 4, 0, 3, 4, 5, 0, 4, 4, 4, 4, 6, 0, 7, 0, 6, 0, 5, 4, 8, 8, 6, 0, 8, 6, 10, 8, 5, 10, 11, 0, 10, 8, 0, 8, 12, 8, 10, 8, 12, 12, 14, 0, 14, 14, 12, 0, 10, 12, 16, 0, 15, 10, 17, 8, 16, 16, 12, 16, 17, 12, 19
Offset: 1
Keywords
Crossrefs
Cf. A343722.
Programs
-
PARI
pos(list, r) = forstep (k=#list, 1, -1, if (list[k] == r, return (#list - k + 1));); isok(r, n) = {my(list = List()); listput(list, r); for (k=1, oo, r = lift(Mod(r, n)^2); my(i = pos(list, r)); if (i==1, return (1)); if (i>1, return(0)); listput(list, r); );} a(n) = sum(r=0, n-1, 1 - isok(r, n))/4; \\ Michel Marcus, May 02 2021
Formula
a(n) = A343722(n)/4.