cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343731 Numbers k at which tau(k^k) reaches a record high, where tau is the number-of-divisors function A000005.

Original entry on oeis.org

0, 2, 3, 4, 6, 10, 12, 18, 20, 24, 30, 42, 60, 78, 84, 90, 114, 120, 140, 150, 156, 168, 180, 210, 330, 390, 420, 510, 546, 570, 630, 660, 780, 840, 990, 1020, 1050, 1092, 1140, 1170, 1260, 1530, 1540, 1560, 1680, 1848, 1890, 1980, 2100, 2280, 2310, 2730, 3570
Offset: 1

Views

Author

Jon E. Schoenfield, Jun 01 2021

Keywords

Examples

			In the table below, asterisks indicate record high values of tau(k^k):
                        tau(k^k) =
   k  k^k = A000312(k)  A062319(k)
  --  ----------------  ----------
   0                 1           1 *
   1                 1           1
   2                 4           3 *
   3                27           4 *
   4               256           9 *
   5              3125           6
   6             46656          49 *
   7            823543           8
   8          16777216          25
   9         387420489          19
  10       10000000000         121 *
  11      285311670611          12
  12     8916100448256         325 *
.
The numbers k at which those record high values occur are 0, 2, 3, 4, 5, 6, 10, 12, ...
		

Crossrefs

Programs

  • Mathematica
    Join[{0},DeleteDuplicates[Table[{n,DivisorSigma[0,n^n]},{n,2,3600}],GreaterEqual[ #1[[2]],#2[[2]]]&][[;;,1]]] (* Harvey P. Dale, Jul 21 2024 *)
  • Python
    from functools import reduce
    from operator import mul
    from sympy import factorint
    c, A343731_list = 0, [0]
    for n in range(2,10**5):
        x = reduce(mul,(n*d+1 for d in factorint(n).values()))
        if x > c:
            c = x
            A343731_list.append(n) # Chai Wah Wu, Jun 03 2021