A343731 Numbers k at which tau(k^k) reaches a record high, where tau is the number-of-divisors function A000005.
0, 2, 3, 4, 6, 10, 12, 18, 20, 24, 30, 42, 60, 78, 84, 90, 114, 120, 140, 150, 156, 168, 180, 210, 330, 390, 420, 510, 546, 570, 630, 660, 780, 840, 990, 1020, 1050, 1092, 1140, 1170, 1260, 1530, 1540, 1560, 1680, 1848, 1890, 1980, 2100, 2280, 2310, 2730, 3570
Offset: 1
Keywords
Examples
In the table below, asterisks indicate record high values of tau(k^k): tau(k^k) = k k^k = A000312(k) A062319(k) -- ---------------- ---------- 0 1 1 * 1 1 1 2 4 3 * 3 27 4 * 4 256 9 * 5 3125 6 6 46656 49 * 7 823543 8 8 16777216 25 9 387420489 19 10 10000000000 121 * 11 285311670611 12 12 8916100448256 325 * . The numbers k at which those record high values occur are 0, 2, 3, 4, 5, 6, 10, 12, ...
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..10000 (first 510 terms from Chai Wah Wu)
Programs
-
Mathematica
Join[{0},DeleteDuplicates[Table[{n,DivisorSigma[0,n^n]},{n,2,3600}],GreaterEqual[ #1[[2]],#2[[2]]]&][[;;,1]]] (* Harvey P. Dale, Jul 21 2024 *)
-
Python
from functools import reduce from operator import mul from sympy import factorint c, A343731_list = 0, [0] for n in range(2,10**5): x = reduce(mul,(n*d+1 for d in factorint(n).values())) if x > c: c = x A343731_list.append(n) # Chai Wah Wu, Jun 03 2021