cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343751 A(n,k) is the sum of all compositions [c_1, c_2, ..., c_k] of n into k nonnegative parts encoded as Product_{i=1..k} prime(i)^(c_i); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 5, 4, 0, 1, 10, 19, 8, 0, 1, 17, 69, 65, 16, 0, 1, 28, 188, 410, 211, 32, 0, 1, 41, 496, 1726, 2261, 665, 64, 0, 1, 58, 1029, 7182, 14343, 11970, 2059, 128, 0, 1, 77, 2015, 20559, 93345, 112371, 61909, 6305, 256, 0, 1, 100, 3478, 54814, 360612, 1139166, 848506, 315850, 19171, 512, 0
Offset: 0

Views

Author

Alois P. Heinz, Apr 27 2021

Keywords

Examples

			A(1,3) = 10 = 5 + 3 + 2, sum of encoded compositions [0,0,1], [0,1,0], [1,0,0].
A(4,2) = 211 = 81 + 54 + 36 + 24 + 16, sum of encoded compositions [0,4], [1,3], [2,2], [3,1], [4,0].
Square array A(n,k) begins:
  1,  1,    1,     1,      1,        1,        1, ...
  0,  2,    5,    10,     17,       28,       41, ...
  0,  4,   19,    69,    188,      496,     1029, ...
  0,  8,   65,   410,   1726,     7182,    20559, ...
  0, 16,  211,  2261,  14343,    93345,   360612, ...
  0, 32,  665, 11970, 112371,  1139166,  5827122, ...
  0, 64, 2059, 61909, 848506, 13379332, 89131918, ...
		

Crossrefs

Columns k=0-4 give: A000007, A000079, A001047(n+1), A016273, A025931.
Rows n=0-2 give: A000012, A007504, A357251.
Main diagonal gives A332967.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1,
         `if`(k=0, 0, add(ithprime(k)^i*A(n-i, k-1), i=0..n)))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);
    # second Maple program:
    A:= proc(n, k) option remember; `if`(n=0, 1,
         `if`(k=0, 0, ithprime(k)*A(n-1, k)+A(n, k-1)))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1,
         If[k == 0, 0, Prime[k] A[n-1, k] + A[n, k-1]]];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Nov 06 2021, after 2nd Maple program *)

Formula

A(n,k) = [x^n] Product_{i=1..k} 1/(1-prime(i)*x).
A(n,k) = A124960(n+k,k) for k >= 1.