A346431 Primes p such that A007663(i) is divisible by Product_{k=1..7} A343763(k), where i is the index of p in A000040.
157, 313, 547, 859, 937, 1093, 1171, 1249, 1327, 1483, 1873, 1951, 2029, 2341, 2887, 3121, 3433, 3511, 3823, 4057, 4447, 4603, 4759, 4993, 5227, 5851, 6007, 6163, 6397, 6553, 6709, 7177, 7333, 7411, 7489, 7723, 7879, 8269, 8581, 8737, 8893, 8971, 9049, 9127
Offset: 1
Keywords
Examples
(2^(157-1)-1)/157 is divisible by 3 * 7 * 79 * 2731 * 8191 * 121369 * 22366891, so 157 is a term of the sequence.
Programs
-
PARI
fq(n) = (2^(n-1)-1)/n my(prd=3*7*79*2731*8191*121369*22366891); forprime(p=1, , if(Mod(fq(p), prd)==0, print1(p, ", ")))
Comments