cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343770 Numbers k such that 2*k+(A187129(k) mod A185297(k)) is prime.

Original entry on oeis.org

11, 20, 22, 31, 32, 49, 64, 103, 110, 173, 293, 454, 496, 505, 589, 673, 701, 772, 784, 821, 884, 979, 1039, 1292, 1711, 1988, 2236, 2266, 2662, 2701, 4804, 6772, 8641, 8948, 13504, 23867, 40241
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Apr 28 2021

Keywords

Examples

			a(5) = 32 is a term because A187129(32) = 261,
A185297(32) = 59, and 2*32+(261 mod 59) = 89 is prime.
		

Crossrefs

Programs

  • Maple
    g:= proc(n) local i,L,x,y;
      L:= select(t -> isprime(t) and isprime(2*n-t), [2,seq(i,i=3..n,2)]);
      x:= convert(L,`+`);
      y:= nops(L)*2*n - x;
      y mod x
    end proc:
    select(n -> isprime(2*n+g(n)), [$2..10000]); # Robert Israel, Apr 29 2021
  • PARI
    apq(n) = my(s=0, t=0); forprime(p=1, n, if (isprime(2*n-p), s += p; t+= 2*n-p)); t % s;
    isok(k) = isprime(2*k + apq(k)); \\ Michel Marcus, Apr 29 2021