A343770 Numbers k such that 2*k+(A187129(k) mod A185297(k)) is prime.
11, 20, 22, 31, 32, 49, 64, 103, 110, 173, 293, 454, 496, 505, 589, 673, 701, 772, 784, 821, 884, 979, 1039, 1292, 1711, 1988, 2236, 2266, 2662, 2701, 4804, 6772, 8641, 8948, 13504, 23867, 40241
Offset: 1
Examples
a(5) = 32 is a term because A187129(32) = 261, A185297(32) = 59, and 2*32+(261 mod 59) = 89 is prime.
Programs
-
Maple
g:= proc(n) local i,L,x,y; L:= select(t -> isprime(t) and isprime(2*n-t), [2,seq(i,i=3..n,2)]); x:= convert(L,`+`); y:= nops(L)*2*n - x; y mod x end proc: select(n -> isprime(2*n+g(n)), [$2..10000]); # Robert Israel, Apr 29 2021
-
PARI
apq(n) = my(s=0, t=0); forprime(p=1, n, if (isprime(2*n-p), s += p; t+= 2*n-p)); t % s; isok(k) = isprime(2*k + apq(k)); \\ Michel Marcus, Apr 29 2021