cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343775 Primes that are neither of the form (c^q+1)/(c+1) and nor of the form (b^k-1)/(b-1) for any b, c > 1 and k, q primes > 2.

Original entry on oeis.org

2, 5, 17, 19, 23, 29, 37, 41, 47, 53, 59, 67, 71, 79, 83, 89, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, 223, 227, 229, 233, 239, 251, 257, 263, 269, 271, 277, 281, 283, 293, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367
Offset: 1

Views

Author

Bernard Schott, Apr 29 2021

Keywords

Comments

Equivalently, non-Brazilian primes that are not of the form (c^q+1)/(c+1) for some c > 1, q prime > 2.
Equals A220627 \ A059055.

Crossrefs

Primes of the form (b^k-1)/(b-1) = A085104 (Brazilian primes).
Primes of the form (c^q+1)/(c+1) = A059055.
Primes of the form (b^k-1)/(b-1) and also (c^q+1)/(c+1): A002383 \ {3} is a subsequence, but, maybe the intersection (conjecture).
Primes of the form (b^k-1)/(b-1) but not (c^q+1)/(c+1) = A225148.
Primes of the form (c^q+1)/(c+1) but not (b^k-1)/(b-1) = A343774.
Primes neither of the form (c^q+1)/(c+1) nor (b^k-1)/(b-1) = this sequence.

Programs

  • PARI
    isc(p) = for (b=2, p, my(k=3); while ((x=(b^k+1)/(b+1)) <= p, if (x == p, return (1)); k = nextprime(k+1); ); );
    isnotb(p) = for (b=2, p-1, my(d=digits(p, b), md=vecmin(d)); if ((#d > 2) && (md == 1) && (vecmax(d) == 1), return (0)); ); return (1);
    isok(p) = isprime(p) && !isc(p) && isnotb(p); \\ Michel Marcus, May 01 2021