A343804 T(n, k) = Sum_{j=k..n} binomial(n, j)*E2(j, j-k), where E2 are the Eulerian numbers A201637. Triangle read by rows, T(n, k) for 0 <= k <= n.
1, 1, 1, 1, 4, 1, 1, 15, 11, 1, 1, 64, 96, 26, 1, 1, 325, 824, 448, 57, 1, 1, 1956, 7417, 6718, 1779, 120, 1, 1, 13699, 71595, 96633, 43411, 6429, 247, 1, 1, 109600, 746232, 1393588, 944618, 243928, 21898, 502, 1, 1, 986409, 8403000, 20600856, 19521210, 7739362, 1250774, 71742, 1013, 1
Offset: 0
Examples
Triangle starts: [0] 1 [1] 1, 1 [2] 1, 4, 1 [3] 1, 15, 11, 1 [4] 1, 64, 96, 26, 1 [5] 1, 325, 824, 448, 57, 1 [6] 1, 1956, 7417, 6718, 1779, 120, 1 [7] 1, 13699, 71595, 96633, 43411, 6429, 247, 1 [8] 1, 109600, 746232, 1393588, 944618, 243928, 21898, 502, 1 [9] 1, 986409, 8403000, 20600856, 19521210, 7739362, 1250774, 71742, 1013, 1
Programs
-
Maple
T := (n, k) -> add(binomial(n, r)*combinat:-eulerian2(r, r-k), r = k..n): seq(seq(T(n, k), k = 0..n), n = 0..9);