A343805 T(n, k) = [x^k] n! [t^n] 1/(exp((V*(2 + V))/(4*t))*sqrt(1 + V)) where V = W(-2*t*x) and W denotes the Lambert function. Table read by rows, T(n, k) for 0 <= k <= n.
1, 1, 1, 1, 4, 7, 1, 9, 39, 87, 1, 16, 126, 608, 1553, 1, 25, 310, 2470, 12985, 36145, 1, 36, 645, 7560, 62595, 351252, 1037367, 1, 49, 1197, 19285, 225715, 1946259, 11481631, 35402983, 1, 64, 2044, 43232, 673190, 8011136, 71657404, 439552864, 1400424097
Offset: 0
Examples
Triangle starts: [0] 1; [1] 1, 1; [2] 1, 4, 7; [3] 1, 9, 39, 87; [4] 1, 16, 126, 608, 1553; [5] 1, 25, 310, 2470, 12985, 36145; [6] 1, 36, 645, 7560, 62595, 351252, 1037367; [7] 1, 49, 1197, 19285, 225715, 1946259, 11481631, 35402983; [8] 1, 64, 2044, 43232, 673190, 8011136, 71657404, 439552864, 1400424097;
Links
- Federico Ardila, Matthias Beck, and Jodi McWhirter, The arithmetic of Coxeter permutahedra, Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 44(173):1152-1166, 2020.
Programs
-
Maple
alias(W = LambertW): EhrB := exp(-W(-2*t*x)/(2*t) - W(-2*t*x)^2/(4*t))/sqrt(1+W(-2*t*x)): ser := series(EhrB, x, 10): cx := n -> n!*coeff(ser, x, n): T := n -> seq(coeff(cx(n), t, k), k=0..n): seq(T(n), n = 0..9);
-
Mathematica
P := ProductLog[-2 t x]; gf := 1/(E^((P (2 + P))/(4 t)) Sqrt[1 + P]); ser := Series[gf, {x, 0, 10}]; cx[n_] := n! Coefficient[ser, x, n]; Table[CoefficientList[cx[n], t], {n, 0, 8}] // Flatten
Comments