cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343805 T(n, k) = [x^k] n! [t^n] 1/(exp((V*(2 + V))/(4*t))*sqrt(1 + V)) where V = W(-2*t*x) and W denotes the Lambert function. Table read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 7, 1, 9, 39, 87, 1, 16, 126, 608, 1553, 1, 25, 310, 2470, 12985, 36145, 1, 36, 645, 7560, 62595, 351252, 1037367, 1, 49, 1197, 19285, 225715, 1946259, 11481631, 35402983, 1, 64, 2044, 43232, 673190, 8011136, 71657404, 439552864, 1400424097
Offset: 0

Views

Author

Peter Luschny, May 01 2021

Keywords

Comments

The rows of the triangle give the coefficients of the Ehrhart polynomials of integral Coxeter permutahedra of type B. These polynomials count lattice points in a dilated lattice polytope. For a definition see Ardila et al. (p. 1158), the generating functions of these polynomials for the classical root systems are given in theorem 5.2 (p. 1163).

Examples

			Triangle starts:
[0] 1;
[1] 1,  1;
[2] 1,  4,    7;
[3] 1,  9,   39,    87;
[4] 1, 16,  126,   608,   1553;
[5] 1, 25,  310,  2470,  12985,   36145;
[6] 1, 36,  645,  7560,  62595,  351252,  1037367;
[7] 1, 49, 1197, 19285, 225715, 1946259, 11481631,  35402983;
[8] 1, 64, 2044, 43232, 673190, 8011136, 71657404, 439552864, 1400424097;
		

Crossrefs

Cf. A138464 (type A), this sequence (type B), A343806 (type C), A343807 (type D).

Programs

  • Maple
    alias(W = LambertW):
    EhrB := exp(-W(-2*t*x)/(2*t) - W(-2*t*x)^2/(4*t))/sqrt(1+W(-2*t*x)):
    ser := series(EhrB, x, 10): cx := n -> n!*coeff(ser, x, n):
    T := n -> seq(coeff(cx(n), t, k), k=0..n): seq(T(n), n = 0..9);
  • Mathematica
    P := ProductLog[-2 t x]; gf := 1/(E^((P (2 + P))/(4 t)) Sqrt[1 + P]);
    ser := Series[gf, {x, 0, 10}]; cx[n_] := n! Coefficient[ser, x, n];
    Table[CoefficientList[cx[n], t], {n, 0, 8}] // Flatten