A343807 T(n, k) = [x^k] n! [t^n] 1/(exp((V*(2 - 2*t + V))/(4*t))*sqrt(1 + V)) where V = W(-2*t*x) and W denotes the Lambert function. Table read by rows, T(n, k) for 0 <= k <= n.
1, 1, 0, 1, 2, 2, 1, 6, 18, 32, 1, 12, 72, 280, 636, 1, 20, 200, 1320, 6060, 15744, 1, 30, 450, 4480, 32460, 166536, 470680, 1, 42, 882, 12320, 127260, 996408, 5526136, 16542336, 1, 56, 1568, 29232, 405720, 4384800, 36529920, 214436160, 669165840
Offset: 0
Examples
[0] 1; [1] 1, 0; [2] 1, 2, 2; [3] 1, 6, 18, 32; [4] 1, 12, 72, 280, 636; [5] 1, 20, 200, 1320, 6060, 15744; [6] 1, 30, 450, 4480, 32460, 166536, 470680; [7] 1, 42, 882, 12320, 127260, 996408, 5526136, 16542336; [8] 1, 56, 1568, 29232, 405720, 4384800, 36529920, 214436160, 669165840;
Links
- Federico Ardila, Matthias Beck, and Jodi McWhirter, The arithmetic of Coxeter permutahedra, Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 44(173):1152-1166, 2020.
Programs
-
Maple
alias(W = LambertW): EhrD := exp(-(1-t)*W(-2*t*x)/(2*t) - W(-2*t*x)^2/(4*t)) / sqrt(1+W(-2*t*x)): ser := series(EhrD, x, 10): cx := n -> n!*coeff(ser, x, n): T := n -> seq(coeff(cx(n), t, k), k = 0..n): seq(T(n), n = 0..8);
-
Mathematica
P := ProductLog[-2 t x]; gf := 1/(E^((P (2 - 2 t + P))/(4 t)) Sqrt[1 + P]); ser := Series[gf, {x, 0, 10}]; cx[n_] := n! Coefficient[ser, x, n]; Table[If[n == 1, {1, 0}, CoefficientList[cx[n], t]], {n, 0, 8}] // Flatten
Comments