cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343834 Primes with digits in nondecreasing order, only primes, and with sum of digits also a prime.

Original entry on oeis.org

2, 3, 5, 7, 23, 223, 227, 337, 557, 577, 2333, 2357, 2377, 2557, 2777, 33377, 222337, 222557, 233357, 233777, 235577, 2222333, 2233337, 2235557, 3337777, 3355777, 5555777, 22222223, 22233577, 23333357, 23377777, 25577777, 222222227, 222222557, 222222577
Offset: 1

Views

Author

Mikk Heidemaa, May 01 2021

Keywords

Comments

Intersection of A028864 and A062088.

Crossrefs

Programs

  • Mathematica
    a[p_] := With[{dg = IntegerDigits@p}, PrimeQ@p && OrderedQ@dg && AllTrue[dg, PrimeQ] && PrimeQ@ Total@dg]; Cases[ Range[3*10^7], _?(a@# &)] (* or *)
    upToDigitLen[k_] := Cases[ FromDigits@# & /@ Select[ Flatten[ Table[ Tuples[{2, 3, 5, 7}, {i}], {i, k}], 1], OrderedQ[#] &], _?(PrimeQ@# && PrimeQ@ Total@ IntegerDigits@# &)]; upToDigitLen[10]
  • Python
    from sympy import isprime
    from sympy.utilities.iterables import multiset_combinations
    def aupton(terms):
      n, digits, alst = 0, 1, []
      while len(alst) < terms:
        mcstr = "".join(d*digits for d in "2357")
        for mc in multiset_combinations(mcstr, digits):
          sd = sum(int(d) for d in mc)
          if not isprime(sd): continue
          t = int("".join(mc))
          if isprime(t): alst.append(t)
          if len(alst) == terms: break
        else: digits += 1
      return alst
    print(aupton(35)) # Michael S. Branicky, May 01 2021

Extensions

a(33) and beyond from Michael S. Branicky, May 01 2021