A343836 Array T(n, k), n, k > 0, read by antidiagonals; the balanced ternary representation of T(n, k) is obtained by adding componentwise (i.e., without carries) the digits in the balanced ternary representations of n and of k.
0, 1, 1, 2, -1, 2, 3, 3, 3, 3, 4, 4, -2, 4, 4, 5, 2, -4, -4, 2, 5, 6, 6, -3, -3, -3, 6, 6, 7, 7, 10, -2, -2, 10, 7, 7, 8, 5, 8, 8, -4, 8, 8, 5, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 13, 10, 10, -5, 10, 10, 13, 10, 10, 11, 8, 11, 11, 8, -7, -7, 8, 11, 11, 8, 11
Offset: 0
Examples
Array T(n, k) begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ---+----------------------------------------------------------------- 0| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 1| 1 -1 3 4 2 6 7 5 9 10 8 12 13 11 2| 2 3 -2 -4 -3 10 8 9 13 11 12 7 5 6 3| 3 4 -4 -3 -2 8 9 10 11 12 13 5 6 7 4| 4 2 -3 -2 -4 9 10 8 12 13 11 6 7 5 5| 5 6 10 8 9 -5 -7 -6 -11 -13 -12 -8 -10 -9 6| 6 7 8 9 10 -7 -6 -5 -13 -12 -11 -10 -9 -8 7| 7 5 9 10 8 -6 -5 -7 -12 -11 -13 -9 -8 -10 8| 8 9 13 11 12 -11 -13 -12 -8 -10 -9 -5 -7 -6 9| 9 10 11 12 13 -13 -12 -11 -10 -9 -8 -7 -6 -5 10| 10 8 12 13 11 -12 -11 -13 -9 -8 -10 -6 -5 -7 11| 11 12 7 5 6 -8 -10 -9 -5 -7 -6 -11 -13 -12 12| 12 13 5 6 7 -10 -9 -8 -7 -6 -5 -13 -12 -11 13| 13 11 6 7 5 -9 -8 -10 -6 -5 -7 -12 -11 -13 Array T(n, k) begins in balanced ternary: n\k| 0 1 1T 10 11 1TT 1T0 1T1 10T 100 101 11T 110 111 ---+---------------------------------------------------------------------- 0| 0 1 1T 10 11 1TT 1T0 1T1 10T 100 101 11T 110 111 1| 1 T 10 11 1T 1T0 1T1 1TT 100 101 10T 110 111 11T 1T| 1T 10 T1 TT T0 101 10T 100 111 11T 110 1T1 1TT 1T0 10| 10 11 TT T0 T1 10T 100 101 11T 110 111 1TT 1T0 1T1 11| 11 1T T0 T1 TT 100 101 10T 110 111 11T 1T0 1T1 1TT 1TT| 1TT 1T0 101 10T 100 T11 T1T T10 TT1 TTT TT0 T01 T0T T00 1T0| 1T0 1T1 10T 100 101 T1T T10 T11 TTT TT0 TT1 T0T T00 T01 1T1| 1T1 1TT 100 101 10T T10 T11 T1T TT0 TT1 TTT T00 T01 T0T 10T| 10T 100 111 11T 110 TT1 TTT TT0 T01 T0T T00 T11 T1T T10 100| 100 101 11T 110 111 TTT TT0 TT1 T0T T00 T01 T1T T10 T11 101| 101 10T 110 111 11T TT0 TT1 TTT T00 T01 T0T T10 T11 T1T 11T| 11T 110 1T1 1TT 1T0 T01 T0T T00 T11 T1T T10 TT1 TTT TT0 110| 110 111 1TT 1T0 1T1 T0T T00 T01 T1T T10 T11 TTT TT0 TT1 111| 111 11T 1T0 1T1 1TT T00 T01 T0T T10 T11 T1T TT0 TT1 TTT
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10010
- Rémy Sigrist, Colored representation of the table for n, k < 1094 (blue denotes negative values, red denotes positive values, dark colors correspond to small values in absolute value)
- Wikipedia, Balanced ternary: Addition, subtraction and multiplication and division
Programs
-
PARI
T(n,k,c=v->centerlift(Mod(v,3))) = { if (n==0 && k==0, return (0), my (d=c(n), t=c(k)); c(d+t)+3*T((n-d)/3, (k-t)/3)) }
Formula
T(n, k) = T(k, n).
T(m, T(n, k)) = T(T(m, n), k).
T(n, 0) = n.
T(n, n) = -n.
Comments