A343850 Integer part of the area of an irregular hexagon, formed by the regular overlap of two regular pentagons each of side length n.
2, 9, 22, 39, 62, 89, 122, 159, 201, 248, 301, 358, 420, 488, 560, 637, 719, 806, 898, 995, 1098, 1205, 1317, 1434, 1556, 1683, 1815, 1952, 2094, 2240, 2392, 2549, 2711, 2878, 3050, 3226, 3408, 3595, 3787, 3983, 4185, 4392, 4603, 4820, 5042, 5268, 5500, 5736
Offset: 1
Keywords
Examples
a(1) = floor(2 * cos(Pi/10) * (1 + sin(Pi/10))) = 2. a(2) = floor(8 * cos(Pi/10) * (1 + sin(Pi/10))) = 9. a(5) = floor(50 * cos(Pi/10) * (1 + sin(Pi/10))) = 62.
Links
- Mathrecreation, Regular Polygons, Intersecting Regularly, includes image of the irregular hexagon.
Programs
-
Mathematica
Table[Floor[2 n^2Cos[Pi/10](1+Sin[Pi/10])],{n,48}] (* Stefano Spezia, May 11 2021 *)
-
PARI
a(n) = floor(2 * n^2 * cos(Pi/10) * (1 + sin(Pi/10)))
-
PARI
my(c=50+22*quadgen(20)); a(n) = sqrtint(floor(c*n^4))>>2; \\ Kevin Ryde, May 11 2021
Formula
a(n) = floor(2 * n^2 * cos(Pi/10) * (1 + sin(Pi/10))).
Comments