A343867 Number of semicyclic pandiagonal Latin squares of order 2*n+1 with the first row in ascending order.
0, 0, 0, 0, 0, 0, 1560, 0, 34000, 175104, 0, 22417824, 313235960, 0, 83574857328, 1729671003296
Offset: 0
Examples
The following is an example of an order 13 semicyclic square with a step of (1,4). This means moving down one row and across by 4 columns increases the cell value by 1 modulo 13. Symbols can be relabeled to give a square with the first row in ascending order. 0 11 1 7 5 9 3 10 4 8 6 12 2 9 7 0 3 1 12 2 8 6 10 4 11 5 11 5 12 6 10 8 1 4 2 0 3 9 7 1 4 10 8 12 6 0 7 11 9 2 5 3 10 3 6 4 2 5 11 9 0 7 1 8 12 8 2 9 0 11 4 7 5 3 6 12 10 1 7 0 11 2 9 3 10 1 12 5 8 6 4 6 9 7 5 8 1 12 3 10 4 11 2 0 5 12 3 1 7 10 8 6 9 2 0 4 11 3 1 5 12 6 0 4 2 8 11 9 7 10 12 10 8 11 4 2 6 0 7 1 5 3 9 2 6 4 10 0 11 9 12 5 3 7 1 8 4 8 2 9 3 7 5 11 1 12 10 0 6 ... a(12) = 4*(A071607(12) - A123565(25)) + 11240. - _Jim White_, Jul 22 2021 a(14) = 4*(A071607(14) - A123565(29)) + 91176. - _Jim White_, Jul 24 2021 a(15) = 4*(A071607(15) - A123565(31)) + 334800. - _Jim White_, Aug 03 2021
Links
- A. O. L. Atkin, L. Hay, and R. G. Larson, Enumeration and construction of pandiagonal Latin squares of prime order, Computers & Mathematics with Applications, Volume. 9, Iss. 2, 1983, pp. 267-292.
- Andrew Howroyd, PARI Program for Initial Terms.
- Natalia Makarova from Harry White, 1560 semi-cyclic Latin squares of order 13.
- Natalia Makarova from Harry White, 34000 semi-cyclic Latin squares of order 17.
- Eduard I. Vatutin, 175104 semi-cyclic Latin squares of order 19.
Programs
-
PARI
\\ See Links
Extensions
a(12)-a(15) from Jim White, Aug 03 2021
Comments