A343868 Number of semicyclic Latin squares of order n with the first row in ascending order.
0, 0, 0, 8, 40, 338, 1512, 11368, 84960, 828972, 7291900, 85823668, 958954152, 12930529446, 176651211776, 2631044069296, 41847091313152
Offset: 1
Examples
The permutation 164253 can be shown in a 6 X 6 grid: X . . . . . . . . . . X . . . X . . . X . . . . . . . . X . . . X . . . This permutation gives the following 4 semicyclic squares. 1 2 3 4 5 6 1 4 2 5 3 6 1 4 3 6 2 5 1 4 5 2 3 6 2 3 4 5 6 1 2 5 3 6 4 1 3 6 2 5 4 1 2 5 6 3 4 1 4 5 6 1 2 3 3 6 4 1 5 2 5 2 4 1 3 6 6 3 4 1 2 5 6 1 2 3 4 5 4 1 5 2 6 3 4 1 6 3 5 2 4 1 2 5 6 3 3 4 5 6 1 2 5 2 6 3 1 4 6 3 5 2 1 4 5 2 3 6 1 4 5 6 1 2 3 4 6 3 1 4 2 5 2 5 1 4 6 3 3 6 1 4 5 2 In the third example, moving one cell down and two across increases the cell value by 1 (cyclically) and in the fourth example the displacement is 3 rows down and 2 across. Symbols can then be rearranged to give 4 distinct semicyclic squares with the first row in ascending order.
Links
- Andrew Howroyd, Order 6 semicyclic Latin squares
- Andrew Howroyd, PARI Program
Programs
-
PARI
\\ See Links
Formula
a(n) >= 2*((n-1)! - phi(n)).
a(p) = 2*(p-1)! + (p-1)*(A003111((p-1)/2) - p) for odd prime p.
Comments