A343882 Triangular array read by rows: T(n,k) is the number of transitive relations on n labeled nodes with exactly k connected components.
1, 0, 2, 0, 9, 4, 0, 109, 54, 8, 0, 2647, 1115, 216, 16, 0, 110481, 36280, 6790, 720, 32, 0, 7291543, 1801927, 287475, 32020, 2160, 64, 0, 726434549, 133060816, 16873619, 1718290, 129080, 6048, 128, 0, 106312974249, 14380028959, 1387285830, 118346473, 8584240, 467488, 16128, 256
Offset: 0
Examples
Triangular array T(n,k) begins: 1; 0, 2; 0, 9, 4; 0, 109, 54, 8; 0, 2647, 1115, 216, 16; 0, 110481, 36280, 6790, 720, 32; ...
Links
- Geoffrey Critzer, Finite Topologies
Programs
-
Mathematica
A[x_] := Total[Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {, }][[All, 2]]* Table[x^(i - 1)/(i - 1)!, {i, 1, 19}]]; nn = 10; Range[0, nn]! CoefficientList[ Series[Exp[y Log[A[ x + Exp[ x] - 1]]], {x, 0, nn}], {x,y}] // Grid;Table[Take[(Range[0, nn]! CoefficientList[Series[Exp[y Log[A[ x + Exp[ x] - 1]]], {x, 0, nn}], {x, y}])[[i, All]], i], {i, 1, nn}] // Grid (* Import function in code after Jean-François Alcover *)
Formula
E.g.f.: A(x + exp(x) -1)^y where A(x) is the e.g.f. for A001035.
Comments