cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343891 List of primitive triples (a, b, c) for integer-sided triangles where side a is the harmonic mean of the 2 other sides b and c, i.e., 2/a = 1/b + 1/c with b < a < c.

Original entry on oeis.org

4, 3, 6, 12, 10, 15, 15, 12, 20, 21, 15, 35, 24, 21, 28, 35, 30, 42, 40, 36, 45, 45, 35, 63, 55, 40, 88, 56, 44, 77, 60, 55, 66, 63, 56, 72, 72, 52, 117, 77, 63, 99, 80, 65, 104, 84, 78, 91, 91, 70, 130, 99, 90, 110, 105, 77, 165, 112, 105, 120, 117, 99, 143, 120, 85, 204, 132, 102, 187
Offset: 1

Views

Author

Bernard Schott, May 03 2021

Keywords

Comments

The triples (a, b, c) are displayed in increasing order of side a, and if sides a coincide then in increasing order of the side b.
When sides satisfy 2/a = 1/b + 1/c, or a = 2*b*c/(b+c) then a is always the middle side with b < a < c.
Equivalent relations: the heights and sines satisfy 2*h_a = h_b + h_c and 2/sin(A) = 1/sin(B) + 1/sin(C).
Inequalities between sides: a/2 < b < a < c < b*(1+sqrt(2)).

Examples

			(4, 3, 6) is the first triple with 2/4 = 1/3 + 1/6 and 6-4 < 3 < 6+4.
The table begins:
   4,  3,  6;
  12, 10, 15;
  15, 12, 20;
  21, 15, 35;
  24, 21, 28;
  35, 30, 42;
  ...
		

References

  • V. Lespinard & R. Pernet, Trigonométrie, Classe de Mathématiques élémentaires, programme 1962, problème B-337 p. 179, André Desvigne.

Crossrefs

Cf. A020883 (side a), A343892 (side b), A343893 (side c), A343894 (perimeter).

Programs

  • Maple
    for a from 4 to 200 do
    for b from floor(a/2)+1 to a-1 do
    c := a*b/(2*b-a);
    if c=floor(c) and igcd(a,b,c)=1 and c-b