A343891 List of primitive triples (a, b, c) for integer-sided triangles where side a is the harmonic mean of the 2 other sides b and c, i.e., 2/a = 1/b + 1/c with b < a < c.
4, 3, 6, 12, 10, 15, 15, 12, 20, 21, 15, 35, 24, 21, 28, 35, 30, 42, 40, 36, 45, 45, 35, 63, 55, 40, 88, 56, 44, 77, 60, 55, 66, 63, 56, 72, 72, 52, 117, 77, 63, 99, 80, 65, 104, 84, 78, 91, 91, 70, 130, 99, 90, 110, 105, 77, 165, 112, 105, 120, 117, 99, 143, 120, 85, 204, 132, 102, 187
Offset: 1
Examples
(4, 3, 6) is the first triple with 2/4 = 1/3 + 1/6 and 6-4 < 3 < 6+4. The table begins: 4, 3, 6; 12, 10, 15; 15, 12, 20; 21, 15, 35; 24, 21, 28; 35, 30, 42; ...
References
- V. Lespinard & R. Pernet, Trigonométrie, Classe de Mathématiques élémentaires, programme 1962, problème B-337 p. 179, André Desvigne.
Comments