A343894 Perimeters of integer-sided primitive triangles (a, b, c) where side a is the harmonic mean of the 2 other sides b and c, i.e., 2/a = 1/b + 1/c with b < a < c. The triples (a, b, c) are listed in increasing order of side a, and if sides a coincide, in increasing order of side b.
13, 37, 47, 71, 73, 107, 121, 143, 183, 177, 181, 191, 241, 239, 249, 253, 291, 299, 347, 337, 359, 409, 421, 429, 431, 433, 491, 517, 503, 529, 563, 537, 541, 579, 587, 649, 659, 661, 671, 753, 743, 769, 759, 781, 831, 767, 789, 793, 897, 851, 923, 863, 913, 947, 1033, 933
Offset: 1
Keywords
Examples
a(3) = 15 + 12 + 20 = 47, because the third triple is (15, 12, 20) with relations 2/15 = 1/12 + 1/20 and 20-15 < 12 < 20+15.
Links
- Michel Marcus, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
for a from 4 to 200 do for b from floor(a/2)+1 to a-1 do c := a*b/(2*b-a); if c=floor(c) and igcd(a,b,c)=1 and c-b
-
PARI
lista(nn) = {my(list = List()); for (a=4, nn, for (b = floor(a/2)+1, a-1, my(c = a*b/(2*b-a)); if ((denominator(c) == 1) && (gcd([a, b, c]) == 1) && (c-bMichel Marcus, May 10 2021
Comments