A343937 Number of unlabeled semi-identity plane trees with n nodes.
1, 1, 2, 5, 13, 38, 117, 375, 1224, 4095, 13925, 48006, 167259, 588189, 2084948, 7442125, 26725125, 96485782, 350002509, 1275061385, 4662936808, 17111964241, 62996437297, 232589316700, 861028450579, 3195272504259, 11884475937910, 44295733523881, 165420418500155
Offset: 1
Keywords
Examples
The a(1) = 1 through a(5) = 13 trees are the following. The number of nodes is the number of o's plus the number of brackets (...). o (o) (oo) (ooo) (oooo) ((o)) ((o)o) ((o)oo) ((oo)) ((oo)o) (o(o)) ((ooo)) (((o))) (o(o)o) (o(oo)) (oo(o)) (((o))o) (((o)o)) (((oo))) ((o(o))) (o((o))) ((((o))))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
arsiq[n_]:=Join@@Table[Select[Union[Tuples[arsiq/@ptn]],#=={}||(UnsameQ@@DeleteCases[#,{}])&],{ptn,Join@@Permutations/@IntegerPartitions[n-1]}]; Table[Length[arsiq[n]],{n,10}]
-
PARI
F(p)={my(n=serprec(p,x)-1, q=exp(x*y + O(x*x^n))*prod(k=2, n, (1 + y*x^k + O(x*x^n))^polcoef(p,k,x)) ); sum(k=0, n, k!*polcoef(q,k,y))} seq(n)={my(p=O(x)); for(n=1, n, p=x*F(p)); Vec(p)} \\ Andrew Howroyd, May 08 2021
Formula
G.f.: A(x) satisfies A(x) = x*Sum_{j>=0} j!*[y^j] exp(x*y - Sum_{k>=1} (-y)^k*(A(x^k) - x^k)/k). - Andrew Howroyd, May 08 2021
Extensions
Terms a(17) and beyond from Andrew Howroyd, May 08 2021
Comments