cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343960 Triangle read by rows: T(n,m) = Sum_{k=1..m} (k/n)*binomial(n,m-k)*binomial(n,m), n >= m >= 1.

Original entry on oeis.org

1, 1, 2, 1, 5, 4, 1, 9, 17, 8, 1, 14, 46, 49, 16, 1, 20, 100, 180, 129, 32, 1, 27, 190, 510, 603, 321, 64, 1, 35, 329, 1225, 2121, 1827, 769, 128, 1, 44, 532, 2618, 6202, 7700, 5164, 1793, 256, 1, 54, 816, 5124, 15876, 26628, 25392, 13878, 4097, 512
Offset: 1

Views

Author

Yuriy Shablya, May 05 2021

Keywords

Examples

			Triangle begins:
  ---------------------------------------------------------------------
   n \ m |     1     2     3     4     5     6     7     8     9    10
  -------+-------------------------------------------------------------
   1     |     1
   2     |     1     2
   3     |     1     5     4
   4     |     1     9    17     8
   5     |     1    14    46    49    16
   6     |     1    20   100   180   129    32
   7     |     1    27   190   510   603   321    64
   8     |     1    35   329  1225  2121  1827   769   128
   9     |     1    44   532  2618  6202  7700  5164  1793   256
   10    |     1    54   816  5124 15876 26628 25392 13878  4097   512
		

Crossrefs

Cf. A001263.

Programs

  • Mathematica
    T[n_, m_] := Sum[Binomial[n, m - k] * Binomial[n, m] * k/n, {k, 1, n}]; Table[T[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Amiram Eldar, May 06 2021 *)
  • Maxima
    T(n,m):=sum((k/n)*binomial(n,m-k)*binomial(n,m),k,1,m)

Formula

T(n,m) = Sum_{k=1..m} (k/n)*binomial(n,m-k)*binomial(n,m).
G.f.: N(x,y)/(1-N(x,y)), where N(x,y) is a g.f. for the Narayana numbers A001263.
T(n, m) = A001263(n, m)*hypergeom([1 - m, 2], [n - m + 2], -1). - Peter Luschny, May 06 2021