cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343988 Numbers that are the sum of five positive cubes in exactly five ways.

Original entry on oeis.org

1765, 1980, 2043, 2104, 2195, 2250, 2449, 2486, 2491, 2493, 2547, 2584, 2592, 2738, 2745, 2764, 2817, 2888, 2915, 2953, 2969, 3095, 3096, 3133, 3142, 3186, 3188, 3240, 3275, 3277, 3310, 3366, 3403, 3422, 3459, 3464, 3466, 3483, 3529, 3583, 3608, 3627, 3653, 3664, 3671, 3690, 3697, 3707, 3725, 3744, 3746, 3781
Offset: 1

Views

Author

David Consiglio, Jr., May 06 2021

Keywords

Comments

Differs from A343989 at term 7 because 2430 = 1^3 + 2^3 + 2^3 + 6^3 + 13^3 = 1^3 + 4^3 + 5^3 + 8^3 + 12^3 = 2^3 + 2^3 + 7^3 + 7^3 + 12^3 = 2^3 + 3^3 + 4^3 + 10^3 + 11^3 = 3^3 + 6^3 + 9^3 + 9^3 + 9^3 = 4^3 + 5^3 + 8^3 + 9^3 + 10^3.

Examples

			2043 is a term because 2043 = 1^3 + 4^3 + 5^3 + 5^3 + 12^3 = 2^3 + 2^3 + 3^3 + 10^3 + 10^3 = 2^3 + 3^3 + 4^3 + 6^3 + 12^3 = 4^3 + 5^3 + 5^3 + 9^3 + 10^3 = 4^3 + 6^3 + 6^3 + 6^3 + 11^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1,50)]
    for pos in cwr(power_terms,5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k,v in keep.items() if v == 5])
    for x in range(len(rets)):
        print(rets[x])