cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A344182 a(n) = A344026(n) XOR A344028(n).

Original entry on oeis.org

0, 0, 0, 6, 0, 0, 5, 8, 0, 0, 0, 26, 15, 26, 18, 40, 0, 0, 0, 22, 0, 0, 63, 56, 9, 14, 31, 34, 82, 124, 119, 64, 0, 0, 0, 50, 0, 0, 45, 88, 0, 0, 0, 98, 99, 38, 234, 88, 29, 114, 29, 202, 35, 34, 136, 160, 162, 444, 406, 130, 393, 430, 452, 224, 0, 0, 0, 42, 0, 0, 97, 120, 0, 0, 0, 46, 215, 222, 130, 136, 0, 0, 0, 202
Offset: 0

Views

Author

Antti Karttunen, May 16 2021

Keywords

Crossrefs

Cf. A003415, A003714 (positions of zeros), A005940, A069359, A344026, A344028.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A069359(n) = (n*sumdiv(n, d, isprime(d)/d)); \\ From A069359
    A344182(n) = { my(u=A005940(1+n)); bitxor(A003415(u),A069359(u)); };

Formula

a(n) = A344026(n) XOR A344028(n) = A003415(A005940(1+n)) XOR A069359(A005940(1+n)).

A344026 Arithmetic derivative applied to the Doudna sequence: a(n) = A003415(A005940(1+n)).

Original entry on oeis.org

0, 1, 1, 4, 1, 5, 6, 12, 1, 7, 8, 16, 10, 21, 27, 32, 1, 9, 10, 24, 12, 31, 39, 44, 14, 45, 55, 60, 75, 81, 108, 80, 1, 13, 14, 32, 16, 41, 51, 68, 18, 59, 71, 92, 95, 123, 162, 112, 22, 77, 91, 140, 119, 185, 240, 156, 147, 275, 350, 216, 500, 297, 405, 192, 1, 15, 16, 48, 18, 61, 75, 92, 20, 87, 103, 124, 135, 165, 216
Offset: 0

Views

Author

Antti Karttunen, May 07 2021

Keywords

Comments

Coincides with A344028 on Fibbinary numbers, A003714.

Crossrefs

Cf. A000079 (positions of ones), A003415, A003714, A005940.
Cf. also A344027, A344028, A344182.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A344026(n) = A003415(A005940(1+n));

Formula

a(2^n) = 1 for all n >= 0.
Showing 1-2 of 2 results.