A344041 Decimal expansion of Sum_{k>=1} F(k)/(k*2^k), where F(k) is the k-th Fibonacci number (A000045).
8, 6, 0, 8, 1, 7, 8, 8, 1, 9, 2, 8, 0, 0, 8, 0, 7, 7, 7, 7, 8, 8, 6, 6, 4, 6, 5, 9, 0, 1, 2, 1, 0, 8, 5, 0, 8, 4, 9, 1, 4, 1, 3, 6, 5, 0, 8, 0, 5, 7, 9, 3, 0, 9, 5, 1, 4, 0, 1, 2, 2, 0, 7, 9, 8, 5, 1, 2, 2, 4, 3, 0, 9, 2, 2, 2, 6, 3, 9, 2, 2, 7, 2, 2, 9, 8, 0
Offset: 0
Examples
0.86081788192800807777886646590121085084914136508057...
Links
- S. D. Adhikari, N. Saradha, T. N. Shorey and R. Tijdeman, Transcendental infinite sums, Indagationes Mathematicae, Vol. 12, No. 1 (2001), pp. 1-14.
- István Mező, Several Generating Functions for Second-Order Recurrence Sequences, Journal of Integer Sequences, Vol. 12 (2009), Article 09.3.7.
- Renzo Sprugnoli, Sums of reciprocals of the central binomial coefficients, INTEGERS 6 (2006) #A27.
- Index entries for transcendental numbers.
Programs
-
Mathematica
RealDigits[Sum[Fibonacci[n]/n/2^n, {n, 1, Infinity}], 10, 100][[1]]
-
PARI
suminf(k=1, fibonacci(k)/(k*2^k)) \\ Michel Marcus, May 07 2021
Comments