A344045 Primes p such that the decimal digits of p^2 can be partitioned into two or more squares.
7, 13, 19, 37, 41, 97, 107, 191, 223, 379, 397, 487, 509, 701, 997, 1049, 1063, 1093, 1201, 1301, 1801, 1907, 2011, 2029, 3019, 3169, 3319, 3371, 3767, 4013, 4451, 5009, 5011, 5081, 5099, 5693, 6037, 6397, 7001, 8009, 9041, 9521, 9619, 9721, 9907, 10007
Offset: 1
Examples
97 is a term because 97 is a prime and 97^2 = 9409 which can be partitioned into 9, 4, 0, and 9, each of which is a square.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..200
Programs
-
Mathematica
tmsQ[n_]:=Total[Boole[AllTrue[Sqrt[#],IntegerQ]&/@Rest[Table[FromDigits/@ TakeList[IntegerDigits[n^2],q],{q,Flatten[Permutations/@ IntegerPartitions[ IntegerLength[ n^2]],1]}]]]]>0; Select[Prime[ Range[ 3000]],tmsQ]
Comments