cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A344140 a(n) = Sum_{x_1|n, x_2|n, ... , x_n|n} gcd(x_1,x_2, ... ,x_n).

Original entry on oeis.org

1, 5, 10, 99, 36, 4290, 134, 72613, 20713, 1053700, 2058, 2194638822, 8204, 268550150, 1073938440, 156969213515, 131088, 101697785139535, 524306, 3657271905119820, 4398063288332, 17592232181770, 8388630, 4727105990672866963914, 847422827191, 4503600499785740
Offset: 1

Views

Author

Seiichi Manyama, May 10 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[n/#] * DivisorSigma[0, #]^n &]; Array[a, 20] (* Amiram Eldar, May 10 2021 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*numdiv(d)^n);
    
  • PARI
    a(n) = sum(k=1, n, numdiv(gcd(k, n))^n);

Formula

a(n) = Sum_{x_1|n, x_2|n, ... , x_n|n} n/lcm(x_1,x_2, ... ,x_n).
a(n) = Sum_{d|n} phi(n/d) * tau(d)^n.
If p is prime, a(p) = 2^p - 1 + p.
a(n) = Sum_{k=1..n} tau(gcd(k,n))^n.

A344081 a(n) = Sum_{d|n} tau(d)^d, where tau(n) is the number of divisors of n.

Original entry on oeis.org

1, 5, 9, 86, 33, 4109, 129, 65622, 19692, 1048613, 2049, 2176786526, 8193, 268435589, 1073741865, 152587956247, 131073, 101559956692208, 524289, 3656158441111670, 4398046511241, 17592186046469, 8388609, 4722366482871822065758
Offset: 1

Views

Author

Seiichi Manyama, May 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, DivisorSigma[0, #]^# &]; Array[a, 24] (* Amiram Eldar, May 09 2021 *)
  • PARI
    a(n) = sumdiv(n, d, numdiv(d)^d);
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (numdiv(k)*x)^k/(1-x^k)))

Formula

G.f.: Sum_{k >= 1} (tau(k) * x)^k/(1 - x^k).
If p is prime, a(p) = 1 + 2^p.
Showing 1-2 of 2 results.