A344085 Triangle of squarefree numbers first grouped by greatest prime factor, then sorted by omega, then in increasing order, read by rows.
1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 35, 42, 70, 105, 210, 11, 22, 33, 55, 77, 66, 110, 154, 165, 231, 385, 330, 462, 770, 1155, 2310, 13, 26, 39, 65, 91, 143, 78, 130, 182, 195, 273, 286, 429, 455, 715, 1001, 390, 546, 858, 910, 1365, 1430, 2002, 2145, 3003, 5005, 2730, 4290, 6006, 10010, 15015, 30030
Offset: 1
Examples
Triangle begins: 1 2 3 6 5 10 15 30 7 14 21 35 42 70 105 210
Crossrefs
Row lengths are A000079.
Grouping by greatest prime factor only gives A339195.
Row sums are 1 and A339360.
Partition/composition orderings: A026791, A026792, A026793, A036036, A036037, A048793, A066099, A080577, A112798, A118457, A124734, A162247, A193073, A211992, A228100, A228531, A246688, A272020, A299755, A296774, A304038, A319247, A329631, A334301, A334302, A334439, A334442, A335122, A344086, A344087, A344088, A344089.
Programs
-
Mathematica
nn=4; GatherBy[SortBy[Select[Range[Times@@Prime/@Range[nn]],SquareFreeQ[#]&&PrimePi[FactorInteger[#][[-1,1]]]<=nn&],PrimeOmega],FactorInteger[#][[-1,1]]&]
Comments